答案:B方法一:求出交点坐标.再由交点在第一象限求得倾斜角的范围 查看更多

 

题目列表(包括答案和解析)

(2007•浦东新区二模)已知抛物线C:y2=2px(p>0)上横坐标为4的点到焦点的距离为5.
(1)求抛物线C的方程.
(2)设直线y=kx+b(k≠0)与抛物线C交于两点A(x1,y1),B(x2,y2),且|y1-y2|=a(a>0),M是弦AB的中点,过M作平行于x轴的直线交抛物线C于点D,得到△ABD;再分别过弦AD、BD的中点作平行于x轴的直线依次交抛物线C于点E,F,得到△ADE和△BDF;按此方法继续下去.
解决下列问题:
①求证:a2=
16(1-kb)k2

②计算△ABD的面积S△ABD
③根据△ABD的面积S△ABD的计算结果,写出△ADE,△BDF的面积;请设计一种求抛物线C与线段AB所围成封闭图形面积的方法,并求出此封闭图形的面积.

查看答案和解析>>

为适应新课改,切实减轻学生负担,提高学生综合素质,某地区抽取了高三年级文科生300人在数学选修1-1、1-2、4-1选课方面进行改革,由学生从三册中自由选择1册(不可多选,也不可不选)进行选修,选课情况如下表:
1-1 1-2 4-1
男生 75 a 40
女生 b 50 30
(I)为了解学生情况,现采用分层抽样方法从这300人中抽取了30人,若统计发现选择1-2有10人,试根据这一数据求出a,b的值;
(II)因某种原因,要求48≤a≤56,计算a>b的概率.

查看答案和解析>>

(必做题)先阅读:如图,设梯形ABCD的上、下底边的长分别是a,b(a<b),高为h,求梯形的面积.
方法一:延长DA、CB交于点O,过点O作CD的垂线分别交AB、CD于E、F,则EF=h.
设OE=x,∵△OAB∽△ODC,∴
x
x+h
=
a
b
,即x=
ah
b-a

∴S梯形ABCD=S△ODC-S△OAB=
1
2
b(x+h)-
1
2
ax=
1
2
(b-a)x+
1
2
bh=
1
2
(a+b)h.
方法二:作AB的平行线MN分别交AD、BC于MN,过点A作BC的平行线AQ分别于MN、DC于PQ,则△AMP∽△ADQ.
设梯形AMNB的高为x,MN=y,
x
h
=
y-a
b-a
⇒y=a+
b-a
h
x,∴S梯形ABCD=
h
0
(a+
b-a
h
x)dx=(ax+
b-a
2h
x2
|
h
0
=ah+
b-a
2h
•h2=
1
2
(a+b)h.
再解下面的问题:
已知四棱台ABCD-A′B′C′D′的上、下底面的面积分别是S1,S2(S1<S2),棱台的高为h,类比以上两种方法,分别求出棱台的体积(棱锥的体积=
1
3
×底面积×高).

查看答案和解析>>

为适应新课改,切实减轻学生负担,提高学生综合素质,某市某学校高三年级文科生300人在数学选修4-4、4-5、4-7选课方面进行改革,由学生自由选择2门(不可多选或少选),选课情况如下表:
4-4 4-5 4-7
男生 130 a 80
女生 b 100 60
(1)为了解学生情况,现采用分层抽样方法抽取了三科作业共50本,统计发现4-5有18本,试根据这一数据求出a,b的值.
(2)为方便开课,学校要求a≥110,b>110,计算a>b的概率.

查看答案和解析>>

为适应新课改,切实减轻学生负担,提高学生综合素质,某地区抽取了高三年级文科生300人在数学选修1-1、1-2、4-1选课方面进行改革,由学生从三册中自由选择1册(不可多选,也不可不选)进行选修,选课情况如下表:
1-11-24-1
男生75a40
女生b5030
(I)为了解学生情况,现采用分层抽样方法从这300人中抽取了30人,若统计发现选择1-2有10人,试根据这一数据求出a,b的值;
(II)因某种原因,要求48≤a≤56,计算a>b的概率.

查看答案和解析>>


同步练习册答案