题目列表(包括答案和解析)
| x2 |
| m |
| y2 |
| 27 |
|
| A、[9,+∞) |
| B、(1,9] |
| C、(1,2] |
| D、[2,+∞) |
已知抛物线
直线
过抛物线的焦点
且与该抛物线交于
、
两点(点A在第一象限)
(Ⅰ)若
,求直线
的方程;
(Ⅱ)过点
的抛物线的切线与直线
交于点
,求证:
。
【解析】本试题主要是考查了直线与抛物线的位置关系,利用联立方程组,结合韦达定理求解弦长和直线的方程,以及证明垂直问题。
| x2 |
| m |
| y2 |
| 27 |
|
| A.[9,+∞) | B.(1,9] | C.(1,2] | D.[2,+∞) |
已知抛物线
直线
过抛物线的焦点
且与该抛物线交于
、
两点(点A在第一象限)
(Ⅰ)若
,求直线
的方程;
(Ⅱ)过点
的抛物线的切线与直线
交于点
,求证:
。
【解析】本试题主要是考查了直线与抛物线的位置关系,利用联立方程组,结合韦达定理求解弦长和直线的方程,以及证明垂直问题。
在△ABC中,内角A、B、C所对边的边长分别是a、b、c,已知c=2,C=
.
(Ⅰ)若△ABC的面积等于
,求a、b;
(Ⅱ)若
,求△ABC的面积.
【解析】第一问中利用余弦定理及已知条件得
又因为△ABC的面积等于
,所以
,得
联立方程,解方程组得
.
第二问中。由于
即为即
.
当
时,
,
,
,
所以
当
时,得
,由正弦定理得
,联立方程组
,解得
,得到
。
解:(Ⅰ) (Ⅰ)由余弦定理及已知条件得
,………1分
又因为△ABC的面积等于
,所以
,得
,………1分
联立方程,解方程组得
.
……………2分
(Ⅱ)由题意得![]()
,
即
.
…………2分
当
时,
,
,
,
……1分
所以
………………1分
当
时,得
,由正弦定理得
,联立方程组
,解得
,
;
所以![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com