∴=-1.即AB的斜率为-1.故所求方程为x+y-4=0.评述:本题考查直线的方程与圆的有关知识.要特别注意圆所特有的几何性质. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

已知 F1、F2是椭圆的两焦点,是椭圆在第一象限弧上一点,且满足=1.过点P作倾斜角互补的两条直线PA、PB分别交椭圆于A、B两点.

(1)求P点坐标;

(2)求证直线AB的斜率为定值;

(3)求△PAB面积的最大值.

 

 

 

 

查看答案和解析>>

(本小题满分12分)

已知椭圆方程为,射线(x≥0)与椭圆的交点为M,过M作倾斜角互补的两条直线,分别与椭圆交于A、B两点(异于M).

(Ⅰ)求证直线AB的斜率为定值;

(Ⅱ)求△面积的最大值.

 

 

 

查看答案和解析>>

(本小题满分12分)

已知椭圆方程为,射线(x≥0)与椭圆的交点为M,过M作倾斜角互补的两条直线,分别与椭圆交于A、B两点(异于M).

(Ⅰ)求证直线AB的斜率为定值;

(Ⅱ)求△面积的最大值.

 

 

 

查看答案和解析>>

(本小题满分12分)

已知椭圆方程为,射线x≥0)与椭圆的交点为M,过M作倾斜角互补的两条直线,分别与椭圆交于AB两点(异于M).

(Ⅰ)求证直线AB的斜率为定值;

(Ⅱ)求△面积的最大值.

查看答案和解析>>

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>


同步练习册答案