如图.已知抛物线与x轴交于A两点. 与y轴交于点C(0.3). (1)求抛物线的解析式, (2)求直线BC的函数解析式, (3)在抛物线上.是否存在一点P.使△PAB的面积等于 △ABC的面积.若存在.求出点P的坐标.若不存在. 请说明理由. (4)点Q是直线BC上的一个动点. 若△QOB为等腰三角形.请写出此时 点Q的坐标. 查看更多

 

题目列表(包括答案和解析)

(本题满分12分)在平面直角坐标系中,已知二次函数的图象与x轴交于A,B两点(点A在点B的左边),AB=4,与y轴交于点C,且过点(2,3).

(1)求此二次函数的表达式;

(2)若抛物线的顶点为D,连接CD、CB,问抛物线上是否存在点P,使得∠PBC+∠BDC=90°. 若存在,求出点P的坐标;若不存在,请说明理由;

(3)点K抛物线上C关于对称轴的对称点,点G抛物线上的动点,在x轴上是否存在点F,使A、K、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由

 

 

 

 

 

 

 

查看答案和解析>>

(本题满分12分)已知二次函数的图象如图.

(1)求它的对称轴与轴交点D的坐标;

(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与轴,轴的交点分别为ABC三点,若∠ACB=90°,求此时抛物线的解析式;

(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

(本小题满分12分)如图15,在平面直角坐标系中,点P从原点O出发,沿x轴

向右以每秒1个单位长的速度运动tt>0)秒,抛物线y=x2bxc经过点O和点P.已知

矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).

⑴求cb(用含t的代数式表示);

⑵当4<t<5时,设抛物线分别与线段ABCD交于点MN.

①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;

②求△MPN的面积St的函数关系式,并求t为何值时,S=

③在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围.

 

查看答案和解析>>

(本题满分12分)已知二次函数的图象如图.

(1)求它的对称轴与轴交点D的坐标;

(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与轴,轴的交点分别为ABC三点,若∠ACB=90°,求此时抛物线的解析式;

(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

(本小题满分12分)如图15,在平面直角坐标系中,点P从原点O出发,沿x轴

向右以每秒1个单位长的速度运动tt>0)秒,抛物线y=x2bxc经过点O和点P.已知

矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).

⑴求cb(用含t的代数式表示);

⑵当4<t<5时,设抛物线分别与线段ABCD交于点MN.

①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;

②求△MPN的面积St的函数关系式,并求t为何值时,S=

③在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围.

 

查看答案和解析>>


同步练习册答案