∴|OP|=.评述:本题重点考查双曲线的对称性.两点间距离公式以及数形结合的思想. 查看更多

 

题目列表(包括答案和解析)

(2011•丰台区二模)已知平行四边形ABCD中,AB=6,AD=10,BD=8,E是线段AD的中点.沿BD将△BCD翻折到△BC'D,使得平面BC'D⊥平面ABD.
(Ⅰ)求证:C'D⊥平面ABD;
(Ⅱ)求直线BD与平面BEC'所成角的正弦值;
(Ⅲ)求二面角D-BE-C'的余弦值.
本题重点考查的是翻折问题.在翻折的过程中,哪些是不变的,哪些是改变的学生必须非常清楚.

查看答案和解析>>

已知平行四边形ABCD中,AB=6,AD=10,BD=8,E是线段AD的中点.沿BD将△BCD翻折到△BC'D,使得平面BC'D⊥平面ABD.
(Ⅰ)求证:C'D⊥平面ABD;
(Ⅱ)求直线BD与平面BEC'所成角的正弦值;
(Ⅲ)求二面角D-BE-C'的余弦值.
本题重点考查的是翻折问题.在翻折的过程中,哪些是不变的,哪些是改变的学生必须非常清楚.

查看答案和解析>>

如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花园AMPN,要求B在AM上,D在AN上,且对角线MN过C点,|AB|=3米,|AD|=2米,

(I)要使矩形AMPN的面积大于32平方米,则AN的长应在什么范围内?

(II)当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.

(Ⅲ)若AN的长度不少于6米,则当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.

【解析】本题主要考查函数的应用,导数及均值不等式的应用等,考查学生分析问题和解决问题的能力   第一问要利用相似比得到结论。

(I)由SAMPN > 32 得 > 32 ,

∵x >2,∴,即(3x-8)(x-8)> 0

∴2<X<8/3,即AN长的取值范围是(2,8/3)或(8,+)

第二问,  

当且仅当

(3)令

∴当x > 4,y′> 0,即函数y=在(4,+∞)上单调递增,∴函数y=在[6,+∞]上也单调递增.                

∴当x=6时y=取得最小值,即SAMPN取得最小值27(平方米).

 

查看答案和解析>>

(2012•江苏一模)本题主要考查抛物线的标准方程、简单的几何性质等基础知识,考查运算求解、推理论证的能力.
如图,在平面直角坐标系xOy,抛物线的顶点在原点,焦点为F(1,0).过抛物线在x轴上方的不同两点A、B,作抛物线的切线AC、BD,与x轴分别交于C、D两点,且AC与BD交于点M,直线AD与直线BC交于点N.
(1)求抛物线的标准方程;
(2)求证:MN⊥x轴;
(3)若直线MN与x轴的交点恰为F(1,0),求证:直线AB过定点.

查看答案和解析>>

.若<<0,则下列不等式:①a+b<ab;②|a|>|b|;③a<b;④+>2.正确的不等式有

A.1个                          B.2个                          C.3个                          D.4个

本题主要考查不等式的性质及均值不等式的适用条件.

查看答案和解析>>


同步练习册答案