题目列表(包括答案和解析)
若|a|=2,|b|=
,a与b的夹角为45°,要使kb-a与a垂直,则k=( )
A.±2 B.±![]()
C.
D.2
已知函数f(x)=cos(2x+
)+
-
+
sinx·cosx
⑴ 求函数f(x)的单调减区间; ⑵ 若xÎ[0,
],求f(x)的最值;
⑶ 若f(a)=
,2a是第一象限角,求sin2a的值.
【解析】第一问中,利用f(x)=
cos2x-
sin2x-cos2x+
sin2x=
sin2x-
cos2x=sin(2x-
)令
+2kp≤2x-
≤
+2kp,
解得
+kp≤x≤
+kp
第二问中,∵xÎ[0,
],∴2x-
Î[-
,
],
∴当2x-
=-
,即x=0时,f(x)min=-
,
当2x-
=
,
即x=
时,f(x)max=1
第三问中,(a)=sin(2a-
)=
,2a是第一象限角,即2kp<2a<
+2kp
∴ 2kp-
<2a-
<
+2kp,∴ cos(2a-
)=![]()
利用构造角得到sin2a=sin[(2a-
)+
]
解:⑴ f(x)=
cos2x-
sin2x-cos2x+
sin2x ………2分
=
sin2x-
cos2x=sin(2x-
)
……………………3分
⑴ 令
+2kp≤2x-
≤
+2kp,
解得
+kp≤x≤
+kp
……………………5分
∴ f(x)的减区间是[
+kp,
+kp](kÎZ) ……………………6分
⑵ ∵xÎ[0,
],∴2x-
Î[-
,
], ……………………7分
∴当2x-
=-
,即x=0时,f(x)min=-
, ……………………8分
当2x-
=
,
即x=
时,f(x)max=1
……………………9分
⑶ f(a)=sin(2a-
)=
,2a是第一象限角,即2kp<2a<
+2kp
∴ 2kp-
<2a-
<
+2kp,∴ cos(2a-
)=
, ……………………11分
∴ sin2a=sin[(2a-
)+
]
=sin(2a-
)·cos
+cos(2a-
)·sin
………12分
=
×
+
×
=![]()
设函数f(x)=x3-3ax2+3b2x(a、b∈R).
(Ⅰ)若a=1,b=0,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)当b=1时,若函数f(x)在[-1,1]上是增函数,求a的取值范围;
(Ⅲ)若0<a<b,不等式
对任意x∈(1,+∞)恒成立,求整数k的最大值.
已知函数f(x)=x3+ax2+bx-4,若x=-
与x=-1是f(x)的极值点.
(1)求a、b及函数f(x)的极值;
(2)设g(x)=kx2+x-8,(k∈R),试讨论函数F(x)=f(x)-g(x)在区间[0,+∞)上的零点个数.
若a=(2,1),b=(1,k),a∥b,则实数k的值为
A.k=2
B.![]()
C.k=-2
D.![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com