题目列表(包括答案和解析)
已知抛物线
的焦点为F,准线为l,是否存在双曲线C,同时满足以下两个条件:
(Ⅰ)双曲线C的一个焦点为F,相应于F的准线为l;
(Ⅱ)双曲线C截与直线x-y=0垂直的直线所得线段AB的长为2
,并且线段AB的中点恰好在直线x-y=0上.
若存在,求出该双曲线C的方程;若不存在,说明理由.
(1)试求m的值,并分别写出x′和y′用x、y表示的关系式;
(2)将(x,y)作为点P的坐标,(x′,y′)作为点Q的坐标,上述关系式可以看作是坐标平面上点的一个变换:它将平面上的点P变到这一平面上的点Q.
当点P在直线y=x+1上移动时,试求点P经该变换后得到的点Q的轨迹方程.
(3)是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在c 该直线上?若存在,试求出所有这些直线;若不存在,则说明理由.
以椭圆
=1的焦点为焦点,过直线l:x-y+9=0上一点M作椭圆,要使所作椭圆的长轴最短,点M应在何处?并求出此时的椭圆方程.
如图所示,已知两点P(-2,2)、Q(0,2)以及一直线l:y=x,设长为
的线段AB在直线l上移动.求直线PA和QB的交点M的轨迹方程.
以坐标原点为顶点,x轴为对称轴的抛物线C与直线x-y+k=0相交于点P(1,3)求:
(1)抛物线C的方程;
(2)以直线l被抛物线C所截得的弦为直径的圆的方程.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com