答案:D解析:由S底=S侧cosθ可得P1=P2 查看更多

 

题目列表(包括答案和解析)

答案:D

解析:本题考查同角三角函数关系应用能力,先由cotA=知A为钝角,cosA<0排除A和B,再由选D

查看答案和解析>>

答案:D

解析:本题考查同角三角函数关系应用能力,先由cotA=知A为钝角,cosA<0排除A和B,再由选D

查看答案和解析>>

下列推理是归纳推理的是(  )

A.AB为定点,动点P满足|PA|+|PB|=2a>|AB|,得P的轨迹为椭圆

B.由a1=1,an=3n-1(n>1),求出S1S2S3,猜想数列的前n项和Sn的表达式

C.由圆x2y2r2的面积πr2,猜出椭圆=1的面积S=πab

D.科学家利用鱼的沉浮原理制造潜艇

 

查看答案和解析>>

如图所示的长方体中,底面是边长为的正方形,的交点,是线段的中点.

(Ⅰ)求证:平面

(Ⅱ)求证:平面

(Ⅲ)求二面角的大小.

【解析】本试题主要考查了线面平行的判定定理和线面垂直的判定定理,以及二面角的求解的运用。中利用,又平面平面,∴平面,又,∴平面. 可得证明

(3)因为∴为面的法向量.∵

为平面的法向量.∴利用法向量的夹角公式,

的夹角为,即二面角的大小为

方法一:解:(Ⅰ)建立如图所示的空间直角坐标系.连接,则点

,又点,∴

,且不共线,∴

平面平面,∴平面.…………………4分

(Ⅱ)∵

,即

,∴平面.   ………8分

(Ⅲ)∵,∴平面

为面的法向量.∵

为平面的法向量.∴

的夹角为,即二面角的大小为

 

查看答案和解析>>

D

解析:由正弦定理得.又由椭圆定义得AB+BC=2×5=10.AC=8. 所以

查看答案和解析>>


同步练习册答案