题目列表(包括答案和解析)
已知函数 f (x)=
sinωx+
(ω>0,x∈R),且函数 f (x) 的最小正周期为π.
(Ⅰ)求函数 f (x) 的解析式;
(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c.若f (B)=1,
,
且a+c=4,试求b2的值.
|
|
集合A={x│x 2-2x≤0,x∈R}= A={x│0≤x ≤2,x∈R},所以A∩Z={0,1,2},共有3个元素。
方程
的解为_____________.
定义在R上的函数f(x)在区间(-∞,2)上是增函数,且f(x+2)的图象关于x=0对称,则
A.f(-1)<f(3) B.f(0)>f(3) C.f(-1)=f(3) D.f(0)=f(3)
已知函数
.
(Ⅰ)求函数
的单调区间;
(Ⅱ)设
,若对任意
,
,不等式
恒成立,求实数
的取值范围.
【解析】第一问利用
的定义域是
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函数
的单调递增区间是(1,3);单调递减区间是![]()
第二问中,若对任意
不等式
恒成立,问题等价于
只需研究最值即可。
解: (I)
的定义域是
......1分
............. 2分
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函数
的单调递增区间是(1,3);单调递减区间是
........4分
(II)若对任意
不等式
恒成立,
问题等价于
,
.........5分
由(I)可知,在
上,x=1是函数极小值点,这个极小值是唯一的极值点,
故也是最小值点,所以
; ............6分
![]()
当b<1时,
;
当
时,
;
当b>2时,
;
............8分
问题等价于![]()
........11分
解得b<1 或
或
即
,所以实数b的取值范围是
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com