由题意.令15-5r=5.得r=2. 查看更多

 

题目列表(包括答案和解析)

汕头二中拟建一座长米,宽米的长方形体育馆.按照建筑要求,每隔米(为正常数)需打建一个桩位,每个桩位需花费万元(桩位视为一点且打在长方形的边上),桩位之间的米墙面需花万元,在不计地板和天花板的情况下,当为何值时,所需总费用最少?

【解析】本试题主要考查了导数在研究函数中的运用。先求需打个桩位.再求解墙面所需费用为:,最后表示总费用,利用导数判定单调性,求解最值。

解:由题意可知,需打个桩位. …………………2分

墙面所需费用为:,……4分

∴所需总费用)…7分

,则 

时,;当时,

∴当时,取极小值为.而在内极值点唯一,所以.∴当时,(万元),即每隔3米打建一个桩位时,所需总费用最小为1170万元.

 

查看答案和解析>>

已知函数 R).

(Ⅰ)若 ,求曲线  在点  处的的切线方程;

(Ⅱ)若  对任意  恒成立,求实数a的取值范围.

【解析】本试题主要考查了导数在研究函数中的运用。

第一问中,利用当时,

因为切点为(), 则,                 

所以在点()处的曲线的切线方程为:

第二问中,由题意得,即可。

Ⅰ)当时,

,                                  

因为切点为(), 则,                  

所以在点()处的曲线的切线方程为:.    ……5分

(Ⅱ)解法一:由题意得,.      ……9分

(注:凡代入特殊值缩小范围的均给4分)

,           

因为,所以恒成立,

上单调递增,                            ……12分

要使恒成立,则,解得.……15分

解法二:                 ……7分

      (1)当时,上恒成立,

上单调递增,

.                  ……10分

(2)当时,令,对称轴

上单调递增,又    

① 当,即时,上恒成立,

所以单调递增,

,不合题意,舍去  

②当时,, 不合题意,舍去 14分

综上所述: 

 

查看答案和解析>>

一支车队有15辆车,某天依次出发执行运输任务,第一辆车于下午2时出发,第二辆车于下午2时10分出发,第三辆车于下午2时20分出发,依此类推。假设所有的司机都连续开车,并都在下午6时停下来休息。

(1)到下午6时最后一辆车行驶了多长时间?

(2)如果每辆车的行驶速度都是60,这个车队当天一共行驶了多少千米?

【解析】第一问中,利用第一辆车出发时间为下午2时,每隔10分钟即小时出发一辆

则第15辆车在小时,最后一辆车出发时间为:小时

第15辆车行驶时间为:小时(1时40分)

第二问中,设每辆车行驶的时间为:,由题意得到

是以为首项,为公差的等差数列

则行驶的总时间为:

则行驶的总里程为:运用等差数列求和得到。

解:(1)第一辆车出发时间为下午2时,每隔10分钟即小时出发一辆

则第15辆车在小时,最后一辆车出发时间为:小时

第15辆车行驶时间为:小时(1时40分)         ……5分

(2)设每辆车行驶的时间为:,由题意得到

是以为首项,为公差的等差数列

则行驶的总时间为:    ……10分

则行驶的总里程为:

 

查看答案和解析>>

已知各项均为正数的两个数列由表下给出:
定义数列{cn}:c1=0,cn=
bncn-1an
cn-1-an+bncn-1an
(n=2,3,…,5)
,并规定数列
n 1 2 3 4 5
an 1 5 3 1 2
bn 1 6 2 x y
{ an},{ bn}的“并和”为 Sab=a1+a2+…+a5+c5.若 Sab=15,
则y的最小值为
3
3

查看答案和解析>>

观察下列等式:
3
1×2
×
1
2
=1-
1
22
3
1×2
×
1
2
+
4
2×3
×
1
22
=1-
1
22
3
1×2
×
1
2
+
4
2×3
×
1
22
+
5
3×4
×
1
23
=1-
1
23

由以上各式推测第4个等式为
3
1×2
×
1
2
+
4
2×3
×
1
22
+
5
3×4
×
1
23
+
6
4×5
×
1
24
=1-
1
26
3
1×2
×
1
2
+
4
2×3
×
1
22
+
5
3×4
×
1
23
+
6
4×5
×
1
24
=1-
1
26

查看答案和解析>>


同步练习册答案