方法二:ni=?m?(m-1)?(m-2)?-?(m-i+1)=mn?(mn-n)?(mn-2n)?-?[mn-n(i-1)] ① 查看更多

 

题目列表(包括答案和解析)

已知是等差数列,其前n项和为Sn是等比数列,且.

(Ⅰ)求数列的通项公式;

(Ⅱ)记,证明).

【解析】(1)设等差数列的公差为d,等比数列的公比为q.

,得.

由条件,得方程组,解得

所以.

(2)证明:(方法一)

由(1)得

     ①

   ②

由②-①得

(方法二:数学归纳法)

①  当n=1时,,故等式成立.

②  假设当n=k时等式成立,即,则当n=k+1时,有:

   

   

,因此n=k+1时等式也成立

由①和②,可知对任意成立.

 

查看答案和解析>>

某学校高二年级共有1000名学生,其中男生650人,女生350人,为了调查学生周末的休闲方式,用分层抽样的方法抽查了200名学生.
(1)完成下面的2×2列联表;
不喜欢运动 喜欢运动 合计
女生 50
男生
合计 100 200
(2)在喜欢运动的女生中调查她们的运动时间,发现她们的运动时间介于30分钟到90分钟之间,右图是测量结果的频率分布直方图,若从区间段[40,50)和[60,70)的所有女生中随机抽取两名女生,求她们的运动时间在同一区间段的概率.

查看答案和解析>>

(2013•西城区二模)若双曲线x2+
y2
k
=1
的离心率是2,则实数k=(  )

查看答案和解析>>

(本题满分12分)已知二次函数满足条件

(1)求;(2)求在区间上的最大值和最小值。

 

查看答案和解析>>

某学校高二年级共有1000名学生,其中男生650人,女生350人,为了调查学生周末的休闲方式,用分层抽样的方法抽查了200名学生.
(1)完成下面的2×2列联表;
不喜欢运动喜欢运动合计
女生50
男生
合计100200
(2)在喜欢运动的女生中调查她们的运动时间,发现她们的运动时间介于30分钟到90分钟之间,右图是测量结果的频率分布直方图,若从区间段[40,50)和[60,70)的所有女生中随机抽取两名女生,求她们的运动时间在同一区间段的概率.

查看答案和解析>>


同步练习册答案