已知对任意的正整数n, 不等式都成立, 则实数a的取值范围 是 ( ) A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

精英家教网已知正项数列{an},{bn}满足:对任意正整数n,都有an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列,且a1=10,a2=15.
(Ⅰ)求证:数列{
b
n
}
是等差数列;
(Ⅱ)求数列{an},{bn}的通项公式;
(Ⅲ) 设Sn=
1
a1
+
1
a2
+…+
1
an
,如果对任意正整数n,不等式2aSn<2-
bn
an
恒成立,求实数a的取值范围.

查看答案和解析>>

已知正项数列{an},{bn}满足:对任意正整数n,都有an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列,且a1=10,a2=15.
(Ⅰ)求证:数列是等差数列;
(Ⅱ)求数列{an},{bn}的通项公式;
(Ⅲ) 设,如果对任意正整数n,不等式恒成立,求实数a的取值范围.

查看答案和解析>>

已知正项数列{an},{bn}满足:对任意正整数n,都有an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列,且a1=10,a2=15.

(Ⅰ)求证:数列{}是等差数列;

(Ⅱ)求数列{an}的通项公式;

(Ⅲ)设Sn+…+,如果对任意正整数n,不等式2aSn<2-恒成立,求实数a的取值范围.

查看答案和解析>>

设数列{an}的各项都为正数,其前n项和为Sn,已知对任意n∈N*,Sn是an2和an的等差中项.
(Ⅰ)证明数列{an}为等差数列,并求数列{an}的通项公式;
(Ⅱ)证明
1
S1
+
1
S2
+…+
1
Sn
<2;
(Ⅲ)设集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使对满足n>m的一切正整数n,不等式Sn-1005>
a
2
n
2
恒成立,求这样的正整数m共有多少个?

查看答案和解析>>

设数列{an}的各项都为正数,其前n项和为Sn,已知对任意n∈N*,Sn
1
2
an2和an的等差中项
(Ⅰ)证明:数列为等差数列,并求数列{an}的通项公式;
(Ⅱ)证明:
1
2
1
S1
+
1
S2
+…+
1
Sn
<1

(Ⅲ)设集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使对满足n>m的一切正整数n,不等式2Sn-4200>
a
2
n
2
恒成立,试问:这样的正整数m共有多少个.

查看答案和解析>>


同步练习册答案