解:证明:(1)令. 是方程的两根.∴. 当时.由于所以. 又因.得. 即从而得到. 又因, 因.∴. 因, ∴. 综上可知. (2)由题意知是方程的两根, 即是方程的两根, ∴. ∴. ∴. 又因, ∴. 查看更多

 

题目列表(包括答案和解析)

解答题:解答应写出文字说明,证明过程或演算步骤.

已知定义在(—1,1)上的函数满足,且对时,有

(1)

判断在(—1,1)上的奇偶性,并加以证明;

(2)

,求数列{}的通项公式;

(3)

为数列{}的前项和,问是否存在正整数,使得对任意的,有成立?若存在,求出的最小值,若不存在,则说明理由.(注意:文科考生只做(1)(2),理科考生全做)

查看答案和解析>>

解答题:解答时应写出文字说明、证明过程或演算步骤

已知定义在(-1,1)上的函数f(x)满足,且对x,y∈(-1,1)时,有

(1)

判断f(x)在(-1,1)上的奇偶性,并加以证明;

(2)

,求数列{f(x)}的通项公式;

(3)

设Tn为数列{}的前n项和,问是否存在正整数m,使得对任意的n∈N*,有成立?若存在,求出m的最小值,若不存在,则说明理由.

查看答案和解析>>

(2013•成都二模)已知函数f(x)=x-
1
x
,g(x)=alnx
,其中x>0,a∈R,令函数h(x)=f(x)-g(x).
(Ⅰ)若函数h(x)在(0,+∞)上单调递增,求a的取值范围;
(Ⅱ)当a取(I)中的最大值时,判断方程h(x)+h(2-x)=0在(0,1)上是否有解,并说明理由;
(Ⅲ)令函数F(x)=
1
x
+2lnx,证明不等式
2n
k=1
(-1)kF[1+(-
1
2
)
k
]<1(n∈N*)

查看答案和解析>>

已知函数f(x)=x,函数g(x)是反比例函数,且g(1)=2,令h(x)=f(x)-g(x).
(1)求函数g(x),并证明函数h(x)在(0,+∞)上是单调增函数;
(2)解h(x)>1.

查看答案和解析>>

已知函数f(x)=x,函数g(x)是反比例函数,且g(1)=2,令h(x)=f(x)-g(x).
(1)求函数g(x),并证明函数h(x)在(0,+∞)上是单调增函数;
(2)解h(x)>1.

查看答案和解析>>


同步练习册答案