题目列表(包括答案和解析)
设抛物线
的焦点为
,点
,线段
的中点在抛物线上.设动直线
与抛物线相切于点
,且与抛物线的准线相交于点
,以
为直径的圆记为圆
.
(1)求
的值;
(2)证明:圆
与
轴必有公共点;
(3)在坐标平面上是否存在定点
,使得圆
恒过点
?若存在,求出
的坐标;若不存在,说明理由.
过抛物线
的焦点F作一直线交抛物线于
点,则以
为直径的圆与抛物线准线的位置关系是
[
]A
.相离 B.相切 C.相交 D.三种都可能| A、相离 | B、相切 | C、相交 | D、不确定 |
| 4 | 3 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com