本题等价于求函数x=f在时的最小值.易得 查看更多

 

题目列表(包括答案和解析)

有以下五个命题①y=sin2x+
9
sin2x
的最小值是6.②已知f(x)=
x-
11
x-
10
,则f(4)<f(3).③函数f(x)值域为(-∞,0],等价于f(x)≤0恒成立.④函数y=
1
x-1
在定义域上单调递减.⑤若函数y=f(x)的值域是[1,3],则函数F(x)=1-f(x+3)的值域是[-5,-3].其中真命题是:

查看答案和解析>>

(本题满分14分)已知函数f (x)=lnx,g(x)=ex

 (I)若函数φ (x) = f (x)-,求函数φ (x)的单调区间;

 (Ⅱ)设直线l为函数 y=f (x) 的图象上一点A(x0,f (x0))处的切线.证明:在区间(1,+∞)上存在唯一的x0,使得直线l与曲线y=g(x)相切.

注:e为自然对数的底数.

 

查看答案和解析>>

有以下五个命题①的最小值是6.②已知,则f(4)<f(3).③函数f(x)值域为(-∞,0],等价于f(x)≤0恒成立.④函数在定义域上单调递减.⑤若函数y=f(x)的值域是[1,3],则函数F(x)=1-f(x+3)的值域是[-5,-3].其中真命题是:   

查看答案和解析>>

已知函数f(x)=lnx,g(x)=x2+bx(a≠0).

(1)若a=-2时,函数h(x)=f(x)-g(x)在其定义域内是增函数,求b的取值范围;

(2)在(1)的结论下,设函数φ(x)=e2x+bex,x∈[0,ln2],求函数φ(x)的最小值;

(3)设函数f(x)的图象C1与函数g(x)的图象C2交于P、Q,过线段PQ的中点R作x轴的垂线分别交C1、C2于点M、N,问是否存在点R,使C1在M处的切线与C2在N处的切线平行?若存在,求出R的横坐标;若不存在,请说明理由.

查看答案和解析>>

已知函数f(x)=lnx,g(x)=ax2+bx(a≠0).

(Ⅰ)若a=-2时,函数h(x)=f(x)-g(x)在其定义域是增函数,求b的取值范围;

(Ⅱ)在(Ⅰ)的结论下,设函数(x)=e2x+bex,x∈[0,ln2],求函数(x)的最小值;

(Ⅲ)设函数f(x)的图象C1与函数g(x)的图象C2交于点P、Q,过线段PQ的中点R作x轴的垂线分别交C1、C2于点M、N,问是否存在点R,使C1在M处的切线与C2在N处的切线平行?若存在,求出R的横坐标;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案