(1)内角和定理:三角形内角和为.这是三角形中三角函数问题的特殊性.解题可不能忘记!任意两角和与第三个角总互补.任意两半角和与第三个角的半角总互余.锐角三角形三内角都是锐角三内角的余弦值为正值任两角和都是钝角任意两边的平方和大于第三边的平方. (2)正弦定理:(R为三角形外接圆的半径).注意: ①正弦定理的一些变式:, ,, ② 已知三角形两边一对角.求解三角形时.若运用正弦定理.则务必注意可能有两解. (3)余弦定理:等.常用余弦定理鉴定三角形形状. (4)面积公式:等等(其中为三角形内切圆半径). (5)三角形中的射影公式:,, . 特别提醒:① 求解三角形中的问题时.一定要注意这个特殊性:, ② 求解三角形中含有边角混合关系的问题时.常运用正弦定理.余弦定理实现边角互化. 查看更多

 

题目列表(包括答案和解析)

我们知道,任何一个三角形的任意三条边与对应的三个内角满足余弦定理,比如:在△ABC中,三条边a,b,c对应的内角分别为A、B、C,那么用余弦定理表达边角关系的一种形式为:a2=b2+c2-2bccosA,请你用规范合理的文字叙述余弦定理(注意,表述中不能出现任何字母):
三角形的任意一边的平方等于另外两边的平方和与这两边以及它们的夹角的余弦的乘积的2倍的差
三角形的任意一边的平方等于另外两边的平方和与这两边以及它们的夹角的余弦的乘积的2倍的差

查看答案和解析>>

、出租车几何学是由十九世纪的赫尔曼-闵可夫斯基所创立的。在出租车几何学中,点还是形如的有序实数对,直线还是满足的所有组成的图形,角度大小的定义也和原来一样。直角坐标系内任意两点定义它们之间的一种“距离”:,请解决以下问题:

1、(理)求线段上一点的距离到原点的“距离”;

(文)求点的“距离”

2、(理)定义:“圆”是所有到定点“距离”为定值的点组成的图形,

求“圆周”上的所有点到点 的“距离”均为 的“圆”方程;

(文)求线段上一点的距离到原点的“距离”;

3、(理)点,写出线段的垂直平分线的轨迹方程并画出大致图像.

(文)定义:“圆”是所有到定点“距离”为定值的点组成的图形,点,求经过这三个点确定的一个“圆”的方程,并画出大致图像;

(说明所给图形小正方形的单位是1)

 

 

 

 

查看答案和解析>>

、出租车几何学是由十九世纪的赫尔曼-闵可夫斯基所创立的。在出租车几何学中,点还是形如的有序实数对,直线还是满足的所有组成的图形,角度大小的定义也和原来一样。直角坐标系内任意两点定义它们之间的一种“距离”:,请解决以下问题:
1、(理)求线段上一点的距离到原点的“距离”;
(文)求点的“距离”
2、(理)定义:“圆”是所有到定点“距离”为定值的点组成的图形,
求“圆周”上的所有点到点 的“距离”均为 的“圆”方程;
(文)求线段上一点的距离到原点的“距离”;
3、(理)点,写出线段的垂直平分线的轨迹方程并画出大致图像.
(文)定义:“圆”是所有到定点“距离”为定值的点组成的图形,点,求经过这三个点确定的一个“圆”的方程,并画出大致图像;
(说明所给图形小正方形的单位是1)

查看答案和解析>>

已知椭圆C1的中心在坐标原点,焦点在坐标轴上.
(1)若椭圆C1过点(,0)和(0,2),求椭圆C1的标准方程;
(2)试判断命题“若椭圆C2:x2+y2=1(在椭圆C1内)任意一条切线都与椭圆C1交于两点,且这两点总与坐标原点构成直角三角形,则满足条件的椭圆C1恒过定点”的真假.若命题为真命题,求出定点坐标,若为假命题,说明理由.

查看答案和解析>>

已知椭圆C1的中心在坐标原点,焦点在坐标轴上.
(1)若椭圆C1过点(
2
,0)和(0,2),求椭圆C1的标准方程;
(2)试判断命题“若椭圆C2:x2+y2=1(在椭圆C1内)任意一条切线都与椭圆C1交于两点,且这两点总与坐标原点构成直角三角形,则满足条件的椭圆C1恒过定点”的真假.若命题为真命题,求出定点坐标,若为假命题,说明理由.

查看答案和解析>>


同步练习册答案