取的中点,, 查看更多

 

题目列表(包括答案和解析)

中心在原点,焦点在x轴上的椭圆,率心率e=
2
2
,此椭圆与直线3x-3y+2
3
=0
交于A、B两点,且OA⊥OB(其中O为坐标原点).
(1)求椭圆方程;
(2)若M是椭圆上任意一点,F1、F2为椭圆的两个焦点,求∠F1MF2的取值范围.

查看答案和解析>>

点Q位于直线x=-3右侧,且到点F(-1,0)与到直线x=-3的距离之和等于4.
(1)求动点Q的轨迹C;
(2)直线l过点M(1,0)交曲线C于A、B两点,点P满足
FP
=
1
2
(
FA
+
FB)
EP
AB
=0
,又
OE
=(x0,0),其中O为坐标原点,求x0的取值范围;
(3)在(2)的条件下,△PEF能否成为以EF为底的等腰三角形?若能,求出此时直线l的方程;若不能,请说明理由.

查看答案和解析>>

点Q位于直线x=-3右侧,且到点F(-1,0)与到直线x=-3的距离之和等于4.
(1)求动点Q的轨迹C;
(2)直线l过点M(1,0)交曲线C于A、B两点,点P满足
FP
=
1
2
(
FA
+
FB)
EP
AB
=0
,又
OE
=(x0,0),其中O为坐标原点,求x0的取值范围;
(3)在(2)的条件下,△PEF能否成为以EF为底的等腰三角形?若能,求出此时直线l的方程;若不能,请说明理由.

查看答案和解析>>

点Q位于直线x=-3右侧,且到点F(-1,0)与到直线x=-3的距离之和等于4.
(1)求动点Q的轨迹C;
(2)直线l过点M(1,0)交曲线C于A、B两点,点P满足,又=(x,0),其中O为坐标原点,求x的取值范围;
(3)在(2)的条件下,△PEF能否成为以EF为底的等腰三角形?若能,求出此时直线l的方程;若不能,请说明理由.

查看答案和解析>>

点Q位于直线x=-3右侧,且到点F(-1,0)与到直线x=-3的距离之和等于4.
(1)求动点Q的轨迹C;
(2)直线l过点M(1,0)交曲线C于A、B两点,点P满足,又=(x,0),其中O为坐标原点,求x的取值范围;
(3)在(2)的条件下,△PEF能否成为以EF为底的等腰三角形?若能,求出此时直线l的方程;若不能,请说明理由.

查看答案和解析>>


同步练习册答案