题目列表(包括答案和解析)
当今的时代是计算机时代,我们知道计算机装置有一数据输入口A和一个运算结果的输出口
B.某同学编入下列运算程序将数据输入且满足以下性质:(1)从A输入1时,从B得到
;(2)从A输入整数n(n≥2)时,在B得到的结果f(n)是将前一结果f(n-1)先乘以奇数2n-3,再除以奇数2n+1.试问:
(Ⅰ)从A输入2,3,4时,从B分别得到什么数?
(Ⅱ)从A输入1,2,3,……2002时,从B得到的各数之和是多少?并说明理由.
设椭圆
的左、右顶点分别为
,点
在椭圆上且异于
两点,
为坐标原点.
(Ⅰ)若直线
与
的斜率之积为
,求椭圆的离心率;
(Ⅱ)若
,证明直线
的斜率
满足![]()
【解析】(1)解:设点P的坐标为
.由题意,有
①
由
,得
,![]()
由
,可得
,代入①并整理得![]()
由于
,故
.于是
,所以椭圆的离心率![]()
(2)证明:(方法一)
依题意,直线OP的方程为
,设点P的坐标为
.
由条件得
消去
并整理得
②
由
,
及
,
得
.
整理得
.而
,于是
,代入②,
整理得![]()
由
,故
,因此
.
所以
.
(方法二)
依题意,直线OP的方程为
,设点P的坐标为
.
由P在椭圆上,有![]()
因为
,
,所以
,即
③
由
,
,得
整理得
.
于是
,代入③,
整理得![]()
解得
,
所以
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com