.不合题设..由2月份情况可知: 查看更多

 

题目列表(包括答案和解析)

对于函数,定义:若存在非零常数,使函数对定义域内的任意实数,都满足则称函数是准周期函数,常数称为函数的一个准周期.如函数是以为一个准周期且的准周期函数.

    (1) 试判断是否是函数的准周期,说明理由;

(2)证明函数是准周期函数,并求出它的一个准周期和相应的的值;

(3)请你给出一个准周期函数(不同于题设和(2)中函数),指出它的一个准周期和一些性质,并画出它的大致图像.

查看答案和解析>>

(此题8910班做)(本小题满分13分)

设数列的前项和为,对一切,点都在函数 的图象上.

 (Ⅰ)求及数列的通项公式

 (Ⅱ) 将数列依次按1项、2项、3项、4项循环地分为(),(),(),();(),(),(),();(),…,分别计算各个括号内各数之,设由这些按原来括号的前后顺序构成的数列为,求的值;

(Ⅲ)令),求证:

 

查看答案和解析>>

(本小题满分12分)

某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:

日    期

1月10日

2月10日

3月10日

4月10日

5月10日

6月10日

昼夜温差

10

11

13

12

8

6

就诊人数

22

25

29

26

16

12

该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.

⑴ 求选取的2组数据恰好是相邻两个月的概率;

⑵ 若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出关于的线性回归方程

⑶ 若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?

 

查看答案和解析>>

(本小题满分14分)

某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:

日    期

1月10日

2月10日

3月10日

4月10日

5月10日

6月10日

昼夜温差x(°C)

10

11

13

12

8

6

就诊人数y(个)

22

25

29

26

16

12

    该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.

    (Ⅰ)求选取的2组数据恰好是相邻两个月的概率;(5分)

    (Ⅱ)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程;(6分)

    (Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?(3分)

    (参考公式: )

查看答案和解析>>

(本小题满分14分)(注意:在试题卷上作答无效)
设数列的前项和为,对一切,点都在函数 的图象上.
(Ⅰ)求及数列的通项公式
(Ⅱ) 将数列依次按1项、2项、3项、4项循环地分为(),(),(),();(),(),(),();(),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为,求的值;
(Ⅲ)令),求证:

查看答案和解析>>


同步练习册答案