题目列表(包括答案和解析)
对于函数
,定义:若存在非零常数
,使函数
对定义域内的任意
实数,都满足
则称函数
是准周期函数,常数
称为函数
的一个准周期.如函数
是以
为一个准周期且
的准周期函数.
(1) 试判断
是否是函数
的准周期,说明理由;
(2)证明函数
是准周期函数,并求出它的一个准周期和相应的
的值;
(3)请你给出一个准周期函数(不同于题设和(2)中函数),
指出它的一个准周期和一些性质,并画出它的大致图像.
(此题8、9、10班做)(本小题满分13分)
设数列
的前
项和为
,对一切
,点
都在函数
的图象上.
(Ⅰ)求
及数列
的通项公式
;
(Ⅱ) 将数列
依次按1项、2项、3项、4项循环地分为(
),(
,
),(
,
,
),(
,
,
,
);(
),(
,
),(
,
,
),(
,
,
,
);(
),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为
,求
的值;
(Ⅲ)令
(
),求证:
.
(本小题满分12分)
某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
|
日 期 |
1月10日 |
2月10日 |
3月10日 |
4月10日 |
5月10日 |
6月10日 |
|
昼夜温差 |
10 |
11 |
13 |
12 |
8 |
6 |
|
就诊人数 |
22 |
25 |
29 |
26 |
16 |
12 |
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
⑴ 求选取的2组数据恰好是相邻两个月的概率;
⑵ 若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出
关于
的线性回归方程
;
⑶ 若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?
(本小题满分14分)
某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
| 日 期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
| 昼夜温差x(°C) | 10 | 11 | 13 | 12 | 8 | 6 |
| 就诊人数y(个) | 22 | 25 | 29 | 26 | 16 | 12 |
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(Ⅰ)求选取的2组数据恰好是相邻两个月的概率;(5分)
(Ⅱ)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程
;(6分)
(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?(3分)
(参考公式:
)
(本小题满分14分)(注意:在试题卷上作答无效)
设数列
的前
项和为
,对一切
,点
都在函数
的图象上.
(Ⅰ)求
及数列
的通项公式
;
(Ⅱ) 将数列
依次按1项、2项、3项、4项循环地分为(
),(
,
),(
,
,
),(
,
,
,
);(
),(
,
),(
,
,
),(
,
,
,
);(
),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为
,求
的值;
(Ⅲ)令
(
),求证:![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com