设L2的关系式为y=kx+1.将x=2.y=3代入.得3=2k+1.解得k=1. 查看更多

 

题目列表(包括答案和解析)

将直线y=2x-3向右平移3个单位,再向上平移1个单位,求平移后的直线的关系式.
解:在直线y=2x-3上任取两点A(1,-1),B(0,-3).
由题意知:
点A向右平移3个单位得A′(4,-1);再向上平移1个单位得A″(4,0)
点B向右平移3个单位得B′(3,-3);再向上平移1个单位得B″(3,-2)
设平移后的直线的关系式为y=kx+b.
则点A″(4,0),B″(3,-2)在该直线上,
可解得k=2,b=-8.
所以平移后的直线的关系式为y=2x-8.
根据以上信息解答下面问题:
将二次函数y=-x2+2x+3的图象向左平移1个单位,再向下平移2个单位,求平移后的抛物线的关系式.(平移抛物线形状不变)

查看答案和解析>>

将直线y=2x-3向右平移3个单位,再向上平移1个单位,求平移后的直线的关系式.
在直线y=2x-3上任取两点A(1,-1),B(0,-3).
由题意知:
点A向右平移3个单位得A′(4,-1);再向上平移1个单位得A″(4,0)
点B向右平移3个单位得B′(3,-3);再向上平移1个单位得B″(3,-2)
设平移后的直线的关系式为y=kx+b.
则点A″(4,0),B″(3,-2)在该直线上,
可解得k=2,b=-8.
所以平移后的直线的关系式为y=2x-8.
根据以上信息解答下面问题:
将二次函数y=-x2+2x+3的图象向左平移1个单位,再向下平移2个单位,求平移后的抛物线的关系式.(平移抛物线形状不变)

查看答案和解析>>

将直线y=2x-3向右平移3个单位,再向上平移1个单位,求平移后的直线的关系式.
解:在直线y=2x-3上任取两点A(1,-1),B(0,-3).
由题意知:
点A向右平移3个单位得A′(4,-1);再向上平移1个单位得A″(4,0)
点B向右平移3个单位得B′(3,-3);再向上平移1个单位得B″(3,-2)
设平移后的直线的关系式为y=kx+b.
则点A″(4,0),B″(3,-2)在该直线上,
可解得k=2,b=-8.
所以平移后的直线的关系式为y=2x-8.
根据以上信息解答下面问题:
将二次函数y=-x2+2x+3的图象向左平移1个单位,再向下平移2个单位,求平移后的抛物线的关系式.(平移抛物线形状不变)

查看答案和解析>>

周华早起锻炼,往返于家与体育场之间,离家的距离y(米)与时间x(分)的关系如图所示.回答下列问题:
(1)填空:周华从体育场返回行走的行走速度时
 
米/分;
(2)刘明与周华同时出发,按相同的路线前往体育场,刘明离周华家的距离y(米)与时精英家教网间x(分)的关系式为y=kx+400,当周华回到家时,刘明刚好到达体育场.
①直接在图中画出刘明离周华家的距离y(米)与时间x(分)的函数图象;
②填空:周华与刘明在途中共相遇
 
次;
③求周华出发后经过多少分钟与刘明最后一次相遇.

查看答案和解析>>

我们给出如下定义:如图①,平面内两条直线l1、l2相交于点O,对于平面内的任意一点M,若p、q分别是点M到直线l1和l2的距离(P≥0,q≥0),称有序非负实数对[p,q]是点M的距离坐标.
根据上述定义,请解答下列问题:
如图②,平面直角坐标系xoy内,直线l1的关系式为y=x,直线l2的关系式为y=
1
2
x
,M是平面直角坐标系内的点.
(1)若p=q=0,求距离坐标为[0,0]时,点M的坐标;
(2)若q=0,且p+q=m(m>0),利用图②,在第一象限内,求距离坐标为[p,q]时,点M的坐标;
(3)若p=1,q=
1
2
,则坐标平面内距离坐标为[p,q]时,点M可以有几个位置?并用三角尺在图③画出符合条件的点M(简要说明画法).
精英家教网

查看答案和解析>>


同步练习册答案