题目列表(包括答案和解析)
| |||||||||||
1 1 |
| 2 |
| π |
| 4 |
|
若方程x2+(m-2)x-m+5=0的两个根都大于2,求实数m的取值范围.
阅读下面的解法,回答提出的问题.
解:第一步,令判别式Δ=(m-2)2-4(-m+5)≥0,
解得m≥4或m≤-4;
第二步,设两根为x1,x2,由x1>2,x2>2得
,所以
.
所以m<-2.
第三步,由
得m≤-4.
第四步,由第三步得出结论.
当m∈(-∞,-4]时,此方程两根均大于2.
但当取m=-6检验知,方程x2-8x+11=0两根为x=4±
,其中4-
<2.
试问:产生错误的原因是什么?
在△ABC中,a、b、c分别是角A、B、C的对边,cosB=
.
⑴ 若cosA=-
,求cosC的值; ⑵
若AC=
,BC=5,求△ABC的面积.
【解析】第一问中sinB=
=
, sinA=
=![]()
cosC=cos(180°-A-B)=-cos(A+B) =sinA.sinB-cosA·cosB
=
×
-(-
)×
=![]()
第二问中,由
=
+
-2AB×BC×cosB得 10=
+25-8AB
解得AB=5或AB=3综合得△ABC的面积为
或![]()
解:⑴ sinB=
=
, sinA=
=
,………………2分
∴cosC=cos(180°-A-B)=-cos(A+B) ……………………3分
=sinA.sinB-cosA·cosB ……………………4分
=
×
-(-
)×
=
……………………6分
⑵ 由
=
+
-2AB×BC×cosB得 10=
+25-8AB
………………7分
解得AB=5或AB=3, ……………………9分
若AB=5,则S△ABC=
AB×BC×sinB=
×5×5×
=
………………10分
若AB=3,则S△ABC=
AB×BC×sinB=
×5×3×
=
……………………11分
综合得△ABC的面积为
或![]()
已知函数
.
(Ⅰ)求函数
的单调区间;
(Ⅱ)设
,若对任意
,
,不等式
恒成立,求实数
的取值范围.
【解析】第一问利用
的定义域是
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函数
的单调递增区间是(1,3);单调递减区间是![]()
第二问中,若对任意
不等式
恒成立,问题等价于
只需研究最值即可。
解: (I)
的定义域是
......1分
............. 2分
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函数
的单调递增区间是(1,3);单调递减区间是
........4分
(II)若对任意
不等式
恒成立,
问题等价于
,
.........5分
由(I)可知,在
上,x=1是函数极小值点,这个极小值是唯一的极值点,
故也是最小值点,所以
; ............6分
![]()
当b<1时,
;
当
时,
;
当b>2时,
;
............8分
问题等价于![]()
........11分
解得b<1 或
或
即
,所以实数b的取值范围是
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com