题目列表(包括答案和解析)
4. m>2或m<-2 解析:因为f(x)=
在(-1,1)内有零点,所以f(-1)f(1)<0,即(2+m)(2-m)<0,则m>2或m<-2
随机变量
的所有等可能取值为1,2…,n,若
,则( )
A. n=3 B.n=4 C. n=5 D.不能确定
5.m=-3,n=2 解析:因为
的两零点分别是1与2,所以
,即
,解得![]()
6.
解析:因为
只有一个零点,所以方程
只有一个根,因此
,所以![]()
设椭圆
:
(
)的一个顶点为
,
,
分别是椭圆的左、右焦点,离心率
,过椭圆右焦点
的直线
与椭圆
交于
,
两点.
(1)求椭圆
的方程;
(2)是否存在直线
,使得
,若存在,求出直线
的方程;若不存在,说明理由;
【解析】本试题主要考查了椭圆的方程的求解,以及直线与椭圆的位置关系的运用。(1)中椭圆的顶点为
,即
又因为
,得到
,然后求解得到椭圆方程(2)中,对直线分为两种情况讨论,当直线斜率存在时,当直线斜率不存在时,联立方程组,结合
得到结论。
解:(1)椭圆的顶点为
,即![]()
,解得
,
椭圆的标准方程为
--------4分
(2)由题可知,直线
与椭圆必相交.
①当直线斜率不存在时,经检验不合题意. --------5分
②当直线斜率存在时,设存在直线
为
,且
,
.
由
得
, ----------7分
,
,
![]()
=
所以
,
----------10分
故直线
的方程为
或
即
或![]()
如图,长方体
中,底面
是正方形,
是
的中点,
是棱
上任意一点。
(Ⅰ)证明:![]()
;
(Ⅱ)如果
=2 ,
=
,
, 求
的长。
![]()
【解析】(Ⅰ)因底面是正方形,故![]()
,又侧棱垂直底面,可得
,而
,所以
面
,因
,所以
面
,又
面
,所以![]()
;
(Ⅱ)因
=2 ,
=
,,可得
,
,设
,由
得
,即
,解得
,即
的长为
。
![]()
(1)求航天器变轨后的运行轨迹所在的曲线方程;
(2)试问:当航天器在x轴上方时,观测点A、B测得离航天器的距离分别为多少时.应向航天器发出变轨指令?
已知中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2,2),且抛物线
的焦点为F1.
(Ⅰ)求椭圆E的方程;
(Ⅱ)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.
【解析】本试题主要考查了椭圆的方程的求解以及直线与椭圆的位置关系的运用。第一问中,设出椭圆的方程,然后结合抛物线的焦点坐标得到
,又因为
,这样可知得到
。第二问中设直线l的方程为y=-x+m与椭圆联立方程组可以得到
,再利用
可以结合韦达定理求解得到m的值和圆p的方程。
解:(Ⅰ)设椭圆E的方程为![]()
①………………………………1分
②………………2分
③ 由①、②、③得a2=12,b2=6…………3分
所以椭圆E的方程为
…………………………4分
(Ⅱ)依题意,直线OC斜率为1,由此设直线l的方程为y=-x+m,……………5分
代入椭圆E方程,得
…………………………6分
………………………7分
、
………………8分
![]()
………………………9分
![]()
……………………………10分
当m=3时,直线l方程为y=-x+3,此时,x1 +x2=4,圆心为(2,1),半径为2,
圆P的方程为(x-2)2+(y-1)2=4;………………………………11分
同理,当m=-3时,直线l方程为y=-x-3,
圆P的方程为(x+2)2+(y+1)2=4
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com