24. 过山车是游乐场中常见的设施.下图是一种过山车的简易模型.它由水平轨道和在竖直平面内的三个圆形轨道组成.B.C.D分别是三个圆形轨道的最低点.B.C间距与C.D间距相等.半径..一个质量为kg的小球.从轨道的左侧A点以的初速度沿轨道向右运动.A.B间距m.小球与水平轨道间的动摩擦因数.圆形轨道是光滑的.假设水平轨道足够长.圆形轨道间不相互重叠.重力加速度取.计算结果保留小数点后一位数字.试求 (1)小球在经过第一个圆形轨道的最高点时.轨道对小球作用力的大小, (2)如果小球恰能通过第二圆形轨道.B.C间距应是多少, 的条件下.如果要使小球不能脱离轨道.在第三个圆形轨道的设计中.半径应满足的条件,小球最终停留点与起点的距离. 查看更多

 

题目列表(包括答案和解析)

[选做题]在A、B、C、D四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内.
A.(选修4-1:几何证明选讲)
过圆O外一点P分别作圆的切线和割线交圆于A,B,且PB=7,∠ABP=∠ABC,C是圆上一点使得BC=5,求线段AB的长.
B.(选修4-2:矩阵与变换)
求曲线C:xy=1在矩阵
2
2
-
2
2
2
2
2
2
对应的变换作用下得到的曲线C′的方程.
C.(选修4-4:坐标系与参数方程)
已知曲线C1
x=3cosθ
y=2sinθ
(θ为参数)和曲线C2:ρsin(θ-
π
4
)=
2

(1)将两曲线方程分别化成普通方程;
(2)求两曲线的交点坐标.
D.(选修4-5:不等式选讲)
已知|x-a|<
c
4
,|y-b|<
c
6
,求证:|2x-3y-2a+3b|<c.

查看答案和解析>>

选做题在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.
请在答卷纸指定区域内作答.解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲如图,AD是∠BAC的平分线,⊙O过点A且与BC边相切于点D,与AB,AC分别交于E,F,求证:EF∥BC.
B.选修4-2:矩阵与变换
已知a,b∈R,若矩阵M=[
-1
b
a
3
]所对应的变换把直线l:2x-y=3变换为自身,求a,b的值.
C.选修4-4:坐标系与参数方程将参数方程
x=2(t+
1
t
)
y=4(t-
1
t
)
t为参数)化为普通方程.
D.选修4-5:已知a,b是正数,求证(a+
1
b
)(2b+
1
2a
)≥92.

查看答案和解析>>

选做题在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.
A选修4-1:几何证明选讲
如图,延长⊙O的半径OA到B,使OA=AB,DE是圆的一条切线,E是切点,过点B作DE的垂线,垂足为点C.
求证:∠ACB=
1
3
∠OAC.
B选修4-2:矩阵与变换
已知矩阵A=
.
11
21
.
,向量
β
=
1
2
.求向量
a
,使得A2
a
=
β

C选修4-3:坐标系与参数方程
已知椭圆C的极坐标方程为ρ2=
a
3cos2θ+4sin2θ
,焦距为2,求实数a的值.
D选修4-4:不等式选讲
已知函数f(x)=(x-a)2+(x-b)2+(x-c)2+
(a+b+c)2
3
(a,b.c为实数)的最小值为m,若a-b+2c=3,求m的最小值.

查看答案和解析>>

在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.请在答题纸指定区域内 作答.解答应写出文字说明、证明过程或演算步骤.
A.如图,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点D、E.求∠DAC的度数与线段AE的长.
B.已知二阶矩阵A=
2a
b0
属于特征值-1的一个特征向量为
1
-3
,求矩阵A的逆矩阵.

C.已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,曲线C的极坐标方程ρ2cos2θ+3ρ2sin2θ=3,直线l的参数方程为
x=-
3
t
y=1+t
(t为参数,t∈{R}).试求曲线C上点M到直线l的距离的最大值.
D.(1)设x是正数,求证:(1+x)(1+x2)(1+x3)≥8x3
(2)若x∈R,不等式(1+x)(1+x2)(1+x3)≥8x3是否仍然成立?如果仍成立,请给出证明;如果不成立,请举出一个使它不成立的x的值.

查看答案和解析>>

【选做题】在A,B,C,D四小题中只能选做2题,每题10分,共计20分.请在答题卡指定区域内作答,解答时写出文字说明、证明过程或演算步骤.
21-1.(选修4-2:矩阵与变换)
设M是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸压变换.
(1)求矩阵M的特征值及相应的特征向量;
(2)求逆矩阵M-1以及椭圆
x2
4
+
y2
9
=1在M-1的作用下的新曲线的方程.
21-2.(选修4-4:参数方程)
以直角坐标系的原点O为极点,x轴的正半轴为极轴.已知点P的直角坐标为(1,-5),点M的极坐标为(4,
π
2
),若直线l过点P,且倾斜角为 
π
3
,圆C以M为圆心、4为半径.
(1)求直线l关于t的参数方程和圆C的极坐标方程;
(2)试判定直线l和圆C的位置关系.

查看答案和解析>>


同步练习册答案