题目列表(包括答案和解析)
已知函数![]()
(1) 若函数
在
上单调,求
的值;
(2)若函数
在区间
上的最大值是
,求
的取值范围.
【解析】第一问,![]()
![]()
,
、
第二问中,![]()
由(1)知: 当
时,
上单调递增
满足条件当
时, ![]()
![]()
![]()
![]()
解: (1) ![]()
……3分
,
…………….7分
(2) ![]()
由(1)知: 当
时,
上单调递增
满足条件…………..10分
当
时,
且
![]()
…………13分
综上所述: ![]()
已知函数
.(
)
(1)若
在区间
上单调递增,求实数
的取值范围;
(2)若在区间
上,函数
的图象恒在曲线
下方,求
的取值范围.
【解析】第一问中,首先利用
在区间
上单调递增,则
在区间
上恒成立,然后分离参数法得到
,进而得到范围;第二问中,在区间
上,函数
的图象恒在曲线
下方等价于
在区间
上恒成立.然后求解得到。
解:(1)
在区间
上单调递增,
则
在区间
上恒成立. …………3分
即
,而当
时,
,故
.
…………5分
所以
.
…………6分
(2)令
,定义域为
.
在区间
上,函数
的图象恒在曲线
下方等价于
在区间
上恒成立.
∵
…………9分
① 若
,令
,得极值点
,
,
当
,即
时,在(
,+∞)上有
,此时
在区间
上是增函数,并且在该区间上有
,不合题意;
当
,即
时,同理可知,
在区间
上递增,
有
,也不合题意;
…………11分
② 若
,则有
,此时在区间
上恒有
,从而
在区间
上是减函数;
要使
在此区间上恒成立,只须满足![]()
,
由此求得
的范围是
. …………13分
综合①②可知,当
时,函数
的图象恒在直线
下方.
某省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数
与时刻
(时) 的关系为
,其中
是与气象有关的参数,且
.
(1)令
,
,写出该函数的单调区间,并选择其中一种情形进行证明;
(2)若用每天
的最大值作为当天的综合放射性污染指数,并记作
,求
;
(3)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?
【解析】第一问利用定义法求证单调性,并判定结论。
第二问(2)由函数的单调性知
,
∴
,即t的取值范围是
.
当
时,记![]()
则
∵
在
上单调递减,在
上单调递增,
第三问因为当且仅当
时,
.
故当
时不超标,当
时超标.
已知函数f(x)=ex-ax,其中a>0.
(1)若对一切x∈R,f(x)
1恒成立,求a的取值集合;
(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使
恒成立.
【解析】解:
令
.
当
时
单调递减;当
时
单调递增,故当
时,
取最小值![]()
于是对一切
恒成立,当且仅当
. ①
令
则![]()
当
时,
单调递增;当
时,
单调递减.
故当
时,
取最大值
.因此,当且仅当
时,①式成立.
综上所述,
的取值集合为
.
(Ⅱ)由题意知,
令
则
![]()
![]()
令
,则
.当
时,
单调递减;当
时,
单调递增.故当
,
即![]()
从而
,
又![]()
![]()
所以![]()
因为函数
在区间
上的图像是连续不断的一条曲线,所以存在
使
即
成立.
【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出
取最小值
对一切x∈R,f(x)
1恒成立转化为
从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.
如图,
,
,…,
,…是曲线
上的点,
,
,…,
,…是
轴正半轴上的点,且
,
,…,
,…
均为斜边在
轴上的等腰直角三角形(
为坐标原点).
(1)写出
、
和
之间的等量关系,以及
、
和
之间的等量关系;
(2)求证:
(
);
(3)设
,对所有
,
恒成立,求实数
的取值范围.
![]()
【解析】第一问利用有
,
得到
第二问证明:①当
时,可求得
,命题成立;②假设当
时,命题成立,即有
则当
时,由归纳假设及
,
得![]()
第三问
![]()
.………………………2分
因为函数
在区间
上单调递增,所以当
时,
最大为
,即
![]()
解:(1)依题意,有
,
,………………4分
(2)证明:①当
时,可求得
,命题成立;
……………2分
②假设当
时,命题成立,即有
,……………………1分
则当
时,由归纳假设及
,
得
.
即![]()
解得
(
不合题意,舍去)
即当
时,命题成立. …………………………………………4分
综上所述,对所有
,
. ……………………………1分
(3)
![]()
.………………………2分
因为函数
在区间
上单调递增,所以当
时,
最大为
,即
.……………2分
由题意,有![]()
.
所以,![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com