C. D. 查看更多

 

题目列表(包括答案和解析)

C.选修4-4:坐标系与参数方程
在极坐标系下,已知圆O:和直线
(1)求圆O和直线的直角坐标方程;(2)当时,求直线与圆O公共点的一个极坐标.
D.选修4-5:不等式证明选讲
对于任意实数,不等式恒成立,试求实数的取值范围.

查看答案和解析>>

C.选修4-4:坐标系与参数方程
在极坐标系下,已知圆O:和直线
(1)求圆O和直线的直角坐标方程;(2)当时,求直线与圆O公共点的一个极坐标.
D.选修4-5:不等式证明选讲
对于任意实数,不等式恒成立,试求实数的取值范围.

查看答案和解析>>

C

[解析] 由基本不等式,得abab,所以ab,故B错;≥4,故A错;由基本不等式得,即,故C正确;a2b2=(ab)2-2ab=1-2ab≥1-2×,故D错.故选C.

查看答案和解析>>

定义域为R的函数满足,且当时,,则当时,的最小值为( )

A B C D

 

查看答案和解析>>

.过点作圆的弦,其中弦长为整数的共有  (  )    

A.16条          B. 17条        C. 32条            D. 34条

 

查看答案和解析>>

一、选择题:每小题5分,满分60.

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

C

A

A

A

A

B

D

D

B

C

C

二、填空题:每小题5分,满分20.

13.

14. 

15.

16.①③④

三、解答题

17.设两个实数为a,b,,建立平面直角坐标系aOb, 则点在正方形OABC内       ……… 2分

(Ⅰ) 记事件A“两数之和小于1.2”,即,则满足条件的点在多边形OAEFC内

所以                                    ……… 6分

(Ⅱ) 记事件B“两数的平方和小于0.25”,则满足条件的点在扇形内

所以                                                                    ………10分

18.∵m?n                                ……… 4分

  再由余弦定理得:

(Ⅰ)由,故                      ……… 8分

(Ⅱ)由

解得,所以的取值范围是         ………12分

19.(Ⅰ)连接,交,易知中点,故在△中,为边的中位线,故平面平面,所以∥平面            ……… 5分

(Ⅱ)在平面内过点,垂足为H

∵平面⊥平面,且平面∩平面

⊥平面,∴,                                 ……… 8分

又∵中点,∴

⊥平面,∴,又∵

⊥平面.                                                           ………12分

20.(Ⅰ)∵是各项均为正数的等差数列,且公差

 ∴           ……… 3分

为常数,∴是等差数列           ……… 5分

(Ⅱ)∵,∴

是公差为1的等差数列                                       ……… 7分

,∴       ……… 9分

时,                                   ………10分

时,

综上,                                                               ………12分

21.(Ⅰ)                                                                       ……… 4分

(Ⅱ)由椭圆的对称性知:PRQS为菱形,原点O到各边距离相等……… 5分

⑴当P在y轴上时,易知R在x轴上,此时PR方程为

.                                                       ……… 6分

⑵当P在x轴上时,易知R在y轴上,此时PR方程为

.                                                       ……… 7分

⑶当P不在坐标轴上时,设PQ斜率为k,

P在椭圆上,.......①;R在椭圆上,......②

利用Rt△POR可得                               ……… 9分

即 

整理得 .                                               ………11分

再将①②带入,得

综上当时,有.                                       ………12分

22.(Ⅰ)∵,且,∴

∴在上, 变化情况如下表:

x

 

 

b

                                                                                            ……… 2分

∵函数上的最大值为1,

,此时应有

                                                                  ……… 4分

(Ⅱ)                                                                             ……… 6分

所求切线方程为                                             ……… 8分

(Ⅲ)                                   ………10分

     

∴当时,函数的无极值点

时,函数有两个极值点                 ………12分

 

 


同步练习册答案