A. B. C. D.(1.4) 查看更多

 

题目列表(包括答案和解析)

点M(1,4)关于直线l:x-y+1=0对称的点N的坐标是( )
A.(4,1)
B.(2,3)
C.(3,2)
D.(-1,6)

查看答案和解析>>

精英家教网A.(选修4-4坐标系与参数方程)已知点A是曲线ρ=2sinθ上任意一点,则点A到直线ρsin(θ+
π3
)=4
的距离的最小值是
 

B.(选修4-5不等式选讲)不等式|x-log2x|<x+|log2x|的解集是
 

C.(选修4-1几何证明选讲)如图所示,AC和AB分别是圆O的切线,且OC=3,AB=4,延长AO到D点,则△ABD的面积是
 

查看答案和解析>>

(1)选修4-2:矩阵与变换
已知矩阵A=
33
cd
,若矩阵A属于特征值6的一个特征向量为
a1
=
1
1
,属于特征值1的一个特征向量为
a2
=
3
-2
,求矩阵A.
(2)选修4-4:坐标与参数方程
以直角坐标系的原点为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位.已知直线l的极坐标方程为psin(θ-
π
3
)=6,圆C的参数方程为
x=10cosθ
y=10sinθ
,(θ为参数),求直线l被圆C截得的弦长.
(3)选修4-5:不等式选讲
已知实数a,b,c,d满足a+b+c+d=3,a2+2b2+3c2+6d2=5试求a的最值.

查看答案和解析>>

A(1,0,1),B(4,4,6),C(2,2,3),D(10,14,17)这四个点是否共面
 
(共面或不共面).

查看答案和解析>>

(1)选修4-2:矩阵与变换
已知二阶矩阵M有特征值λ=3及对应的一个特征向量
e1
=
1
1
,并且矩阵M对应的变换将点(-1,2)变换成(3,0),求矩阵M.
(2)选修4-4:坐标系与参数方程
过点M(3,4),倾斜角为
π
6
的直线l与圆C:
x=2+5cosθ
y=1+5sinθ
(θ为参数)相交于A、B两点,试确定|MA|•|MB|的值.
(3)选修4-5:不等式选讲
已知实数a,b,c,d,e满足a+b+c+d+e=8,a2+b2+c2+d2+e2=16,试确定e的最大值.

查看答案和解析>>

 

一、选择题:

1―5 DACBC    6―10 BDCAC    11―12 DA

二、填空题:

13.6或―1    14.    15.180    16.①③

三、解答题:

17.(本小题满分10分)

    解:

      ………………4分

   (2)

   

      ………………10分

18.(本小题满分12分)

    解:(1)设中国队以3:1赢得日本队为事件A

    则

    答:中国队以3:1赢得日本队的概率为   ………………4分

   (2)设中方赢下比赛为事件B

    则

    答:中方赢下比赛的  ………………12分

19.(本小题满分12分)

    解:(I)由题意

   

    。  ………………6分

   (2)

   

20.(14分)解法一:(1)取PC中点为G,连GF,则GF//CD,AE//CD且

GF=AE=  ∴GF//AE,AEGF是平行四边形

∴AF//EG,∵EG平面PEC,

AF//平面PEC.   ………………3分

   (2)∵AB⊥AP,AB⊥AD,∴AB⊥平面PAD

∴AB⊥PD∴CD⊥PD

∵CD⊥AD ∴∠ADP为二面角P―CD―B的平面角,∴∠ADP=45°

∵PA⊥AD,∴PA⊥平面ABCD,

延长DA,CE交于一点H,连结PH,则AH=3,

∴PH⊥PD,又PH⊥CD,∴PH⊥平面PCD,

∴∠DPC为平面PEC和平面PAD所成的二面角的平面角, …………6分

   (3)∵VD―PEC=VP―DEC,∴D到平面PEC的距离为 …………12分

解法二:∵AB⊥AP,AB⊥AD,∴AB⊥平面PAD

∴AB⊥PD ∴CD⊥PD

∵CD⊥AD ∴∠ADP为二面角P―CD―B的平面角,∴∠ADP=45°

∵PA⊥AD,∴PA⊥平面ABCD   ………………3分

   (1)以AB为x轴,AD为y轴,AP为z轴建立空间直角坐标系。

   (2)由题意知,平面PAD的法向量

∴平面PEC与平面PAD所成锐二面角的大小为30°  …………8分

   (3)由……12分

21.(本小题满分12分)

解:(1)

x

―2

(-2,-1)

―1

(-1,1)

―1

(1,2)

2

 

+

0

0

+

 

   ………………6分

   (2)存在,

   

22.(本小题满分12分)

解:(1)由

可求得⊙O′的方程为  ………………3分

∴AB为⊙O′的直径,

直线BD的方程为  ………………6分

   (2)设

 

 


同步练习册答案