D.为假:为假 查看更多

 

题目列表(包括答案和解析)

假设两个分类变量X与Y,它们的取值分别为{x1,x2},{y1,y2},其2×2列联表如图所示:对于以下数据,对同一样本能说明X与Y有关的可能性最大的一组为(  )
Y1 Y2 总 计
x1 a b a+b
x2 c d c+d
总 计 a+c b+d a+b+c+d

查看答案和解析>>

为了检验某套眼睛保健操预防学生近视的作用,把500名做过该保健操的学生与另外500名未做该保健操的学生视力情况记录作比较,提出假设H0:“这套眼睛保健操不能起到预防近视的作用”,利用2×2列联表计算的K2≈3.918.经查对临界值表知P(K2≥3.841)=0.05.对此,四名同学做出了以下的判断:
P:有95%的把握认为“这种眼睛保健操能起到预防近视的作用”;
q.若某人未做眼睛保健操,那么他有95%的可能性得近视;
r:这种眼睛保健操预防近视的有效率为95%;
s:这种眼睛保健操预防近视的有效率为5%,
则下列结论中,正确结论的序号是(  )
①p∧?q;   ②?p∧q;   ③(?p∧?q)∧(r∨s);  ④(p∨?r)∧(?q∨s).
A、①③B、②④C、①④D、都不对

查看答案和解析>>

假设人的某一特征(如眼睛大小)是由他的一对基因所决定的,以d表示显性基因,r表示隐性基因,则具有dd基因的人为纯显性,具有rr基因的人是纯隐性,具有rd基因的人为混合性.纯显性与混合性的人都表露显性基因决定的某一特征,孩子从父母身上各得到一个基因,假定父母都是混合性.求:
(1)一个孩子有显性基因决定的特征的概率是多少?
(2)两个孩子中至少有一个有显性基因决定的特征的概率是多少?

查看答案和解析>>

假设人的某一特征(如眼睛大小)是由他的一对基因所决定的,以d表示显性基因,r表示隐性基因,则具有dd基因的人为纯显性,具有rr基因的人是纯隐性,具有rd基因的人为混合性.纯显性与混合性的人都表露显性基因决定的某一特征,孩子从父母身上各得到一个基因,假定父母都是混合性.

问:(1)一个孩子有显性基因决定的特征的概率是多少?

(2)两个孩子中至少有一个有显性基因决定的特征的概率是多少?

 

查看答案和解析>>

假设若干个函数的图象经过平移后能够重合,则称这些函数为“互为生成函数”.给出下列函数:①;②;③;④.则其中属于“互为生成函数”的是

(A) ①②            (B) ①③            (C) ③④            (D) ②④

 

查看答案和解析>>

一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

B

D

D

C

A

C

B

A

C

C

C

二、填空题:本大题共4小题,每小题4分,共16分。把答案填在题中横线上。

13.13     14.       15.2           16.1005

三、解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤。

17.(本小题满分12分)

解(I)

      

  (Ⅱ)由

        

18.(本小题满分12分)

解(I)记事件A;射手甲剩下3颗子弹,

      

(Ⅱ)记事件甲命中1次10环,乙命中两次10环,事件;甲命中2次10环,乙命中1次10环,则四次射击中恰有三次命中10环为事件

(Ⅲ)的取值分别为16,17,18,19,20,

     

19.(本题满分12分)

证(Ⅰ)因为侧面,故

 在中,   由余弦定理有

  故有 

  而     且平面

     

(Ⅱ)由

从而  且

 不妨设  ,则,则

  则

中有   从而(舍负)

的中点时,

 法二:以为原点轴,设,则       由得    即

      

      化简整理得       或

     当重合不满足题意

     当的中点

     故的中点使

 (Ⅲ)取的中点的中点的中点的中点

 连,连,连

 连,且为矩形,

   故为所求二面角的平面角

中,

法二:由已知, 所以二面角的平面角的大小为向量的夹角

因为  

 

20.(本小题满分12分)

(1)由

        切线的斜率切点坐标(2,5+

        所求切线方程为

   (2)若函数为上单调增函数,

        则上恒成立,即不等式上恒成立

        也即上恒成立。

        令上述问题等价于

        而为在上的减函数,

        则于是为所求

21.(本小题满分12分)

解:(1)

        ∵直线l:x-y+2=0与圆x2+y2=b2相切,

=b,∴b=,b2=2,∴=3.                                                    

∴椭圆C1的方程是

(2)∵MP=MF,∴动点M到定直线l1:x=-1的距离等于它的定点F2(1,0)的距离,

∴动点M的轨迹是以l1为准线,F2为焦点的抛物线,∴点M的轨迹C2的方程为

(3)Q(0,0),设

得 

化简得

当且仅当时等号成立,

,又∵y­22≥64,

∴当.    故的取值范围是.

22.(本小题满分14分)

解(I)由题意,令

      

 (Ⅱ)

      

  (1)当时,成立:

  (2)假设当时命题成立,即

       当时,

      

 

 

 


同步练习册答案