2.第Ⅱ卷用蓝.黑色墨水的钢笔或圆珠笔直接答在试卷上. 查看更多

 

题目列表(包括答案和解析)

答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、班级和考号填写在答题卷上。

查看答案和解析>>

将填空题和解答题用0.5毫米的黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试题卷上无效。

查看答案和解析>>

必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。不按以上要求作答的答案无效。

第Ⅰ卷   选择题(共50分)

一、选择题(本大题共10小题,每小题5分,满分50分)

1、设全集U={是不大于9的正整数},{1,2,3 },{3,4,5,6}则图中阴影部分所表示的集合为(  )

       A.{1,2,3,4,5,6}    B. {7,8,9}

       C.{7,8}                        D.    {1,2,4,5,6,7,8,9}

2、计算复数(1-i)2等于(  )

A.0                B.2              C. 4i                   D. -4i

查看答案和解析>>

 

第Ⅱ卷(非选择题,共90分)

二、填空题:(本大题4小题,每小题5分,满分20分)

13.用一个平面去截正方体,其截面是一个多边形,则这个多边形的边数最多是     条 。

 

查看答案和解析>>

(06年重庆卷理)(13分)

某大夏的一部电梯从底层出发后只能在第18、19、20层可以停靠。若该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为,用表示这5位乘客在第20层下电梯的人数,求:

      (I)随机变量的分布列;

      (II)随机变量的期望;

查看答案和解析>>

一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

B

D

D

C

A

C

B

A

C

C

C

二、填空题:本大题共4小题,每小题4分,共16分。把答案填在题中横线上。

13.13     14.       15.2           16.1005

三、解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤。

17.(本小题满分12分)

解(I)

      

  (Ⅱ)由

        

18.(本小题满分12分)

解(I)记事件A;射手甲剩下3颗子弹,

      

(Ⅱ)记事件甲命中1次10环,乙命中两次10环,事件;甲命中2次10环,乙命中1次10环,则四次射击中恰有三次命中10环为事件

(Ⅲ)的取值分别为16,17,18,19,20,

     

19.(本题满分12分)

证(Ⅰ)因为侧面,故

 在中,   由余弦定理有

  故有 

  而     且平面

     

(Ⅱ)由

从而  且

 不妨设  ,则,则

  则

中有   从而(舍负)

的中点时,

 法二:以为原点轴,设,则       由得    即

      

      化简整理得       或

     当重合不满足题意

     当的中点

     故的中点使

 (Ⅲ)取的中点的中点的中点的中点

 连,连,连

 连,且为矩形,

   故为所求二面角的平面角

中,

法二:由已知, 所以二面角的平面角的大小为向量的夹角

因为  

 

20.(本小题满分12分)

(1)由

        切线的斜率切点坐标(2,5+

        所求切线方程为

   (2)若函数为上单调增函数,

        则上恒成立,即不等式上恒成立

        也即上恒成立。

        令上述问题等价于

        而为在上的减函数,

        则于是为所求

21.(本小题满分12分)

解:(1)

        ∵直线l:x-y+2=0与圆x2+y2=b2相切,

=b,∴b=,b2=2,∴=3.                                                    

∴椭圆C1的方程是

(2)∵MP=MF,∴动点M到定直线l1:x=-1的距离等于它的定点F2(1,0)的距离,

∴动点M的轨迹是以l1为准线,F2为焦点的抛物线,∴点M的轨迹C2的方程为

(3)Q(0,0),设

得 

化简得

当且仅当时等号成立,

,又∵y­22≥64,

∴当.    故的取值范围是.

22.(本小题满分14分)

解(I)由题意,令

      

 (Ⅱ)

      

  (1)当时,成立:

  (2)假设当时命题成立,即

       当时,

      

 

 

 


同步练习册答案