查看更多

 

题目列表(包括答案和解析)

(本题满分12分) 已知函数的定义域为,对于任意正数a、b,都有,其中p是常数,且.,当时,总有.

(1)求(写成关于p的表达式);

   (2)判断上的单调性,并加以证明;

   (3)解关于的不等式 .

查看答案和解析>>

(本题满分12分) 某渔业个体户今年年初用96万元购进一艘渔船用于捕捞,规定这艘渔船的使用年限至多为15年. 第一年各种费用之和为10万元,从第二年开始包括维修费用在内,每年所需费用之和都比上一年增加3万元. 该船每年捕捞的总收入为45万元.

(1)该渔业个体户从今年起,第几年开始盈利(即总收入大于成本及所有费用的和)?

(2)在年平均利润达到最大时,该渔业个体户决定淘汰这艘渔船,并将船以10万元卖出,问:此时该渔业个体户获得的利润为多少万元?

(注:上述问题中所得的年限均取整数)

查看答案和解析>>

(本题满分12分) 设数列的前项和为,满足(N*),令.

(1)求证:数列为等差数列;   (2)求数列的通项公式.

查看答案和解析>>

(本题满分12分) 已知函数.

(1)求函数的值域;

(2)求满足方程的值.

查看答案和解析>>

(本题满分12分)  在九江市教研室组织的一次优秀青年教师联谊活动中,有一个有奖竞猜的环节.主持人准备了AB两个相互独立的问题,并且宣布:幸运观众答对问题A可获奖金1000元,答对问题B可获奖金2000元,先答哪个题由观众自由选择,但只有第一个问题答对,才能再答第二题,否则终止答题.若你被选为幸运观众,且假设你答对问题AB的概率分别为

(1) 记先回答问题A的奖金为随机变量, 则的取值分别是多少?

(2) 你觉得应先回答哪个问题才能使你获得更多的奖金?请说明理由.

查看答案和解析>>

一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

B

D

D

C

A

C

B

A

C

C

C

二、填空题:本大题共4小题,每小题4分,共16分。把答案填在题中横线上。

13.13     14.       15.2           16.1005

三、解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤。

17.(本小题满分12分)

解(I)

      

  (Ⅱ)由

        

18.(本小题满分12分)

解(I)记事件A;射手甲剩下3颗子弹,

      

(Ⅱ)记事件甲命中1次10环,乙命中两次10环,事件;甲命中2次10环,乙命中1次10环,则四次射击中恰有三次命中10环为事件

(Ⅲ)的取值分别为16,17,18,19,20,

     

19.(本题满分12分)

证(Ⅰ)因为侧面,故

 在中,   由余弦定理有

  故有 

  而     且平面

     

(Ⅱ)由

从而  且

 不妨设  ,则,则

  则

中有   从而(舍负)

的中点时,

 法二:以为原点轴,设,则       由得    即

      

      化简整理得       或

     当重合不满足题意

     当的中点

     故的中点使

 (Ⅲ)取的中点的中点的中点的中点

 连,连,连

 连,且为矩形,

   故为所求二面角的平面角

中,

法二:由已知, 所以二面角的平面角的大小为向量的夹角

因为  

 

20.(本小题满分12分)

(1)由

        切线的斜率切点坐标(2,5+

        所求切线方程为

   (2)若函数为上单调增函数,

        则上恒成立,即不等式上恒成立

        也即上恒成立。

        令上述问题等价于

        而为在上的减函数,

        则于是为所求

21.(本小题满分12分)

解:(1)

        ∵直线l:x-y+2=0与圆x2+y2=b2相切,

=b,∴b=,b2=2,∴=3.                                                    

∴椭圆C1的方程是

(2)∵MP=MF,∴动点M到定直线l1:x=-1的距离等于它的定点F2(1,0)的距离,

∴动点M的轨迹是以l1为准线,F2为焦点的抛物线,∴点M的轨迹C2的方程为

(3)Q(0,0),设

得 

化简得

当且仅当时等号成立,

,又∵y­22≥64,

∴当.    故的取值范围是.

22.(本小题满分14分)

解(I)由题意,令

      

 (Ⅱ)

      

  (1)当时,成立:

  (2)假设当时命题成立,即

       当时,

      

 

 

 


同步练习册答案