例2 如图3.已知面积为1的正方形的对角线相交于点.过点O 任作一条直线分别交于.则阴影部分的面积是 . 解析:将△OCF绕点O旋转180°后.恰好与△OAE重合. 于是阴影部分的面积就相当于△OAD的面积.即是正方形面积 的.故阴影部分面积为. 查看更多

 

题目列表(包括答案和解析)

18、如图所示,图形(1),(2),(3),(4)分别由两个相同的正三角形,正方形,正五边形,正六边形组成.本题中我们探索各图形顶点,边数,区域三者之间的关系.(例我们规定如图(2)的顶点数为16;边数为24,像A1A,AH为边,AH不能再算边,边与边不能重叠;区域数为9,它们由八个小三角形区域和中间区域ABCDEFGH组成,它们相互独立.)
(1)每个图形中各有多少个顶点?多少条边?多少个区域?请将结果填入表格中.
(2)根据(1)中的结论,写出a,b,c三者之间的关系表达式.

查看答案和解析>>

归纳猜想:同学们,让我们一起进行一次研究性学习:
(1)如图1已知正三角形ABC的中心为O,半径为R,将其沿直线l向右翻滚,当正三角形翻滚一周时,其中心O经过的路程是多少?

(2)如图2将半径为R的正方形沿直线l向右翻滚,当正方形翻滚一周时,其中心O经过的路程是多少?

(3)猜想:把正多边形翻滚一周,其中心O所经过的路程是多少(R为正多边形的半径,可参看图2)?请说明理由.

(4)进一步猜想:任何多边形都有一个外接圆,若将任意圆内接多边形翻滚一周时,其外心所经过的路程是否是一个定值(R为多边形外接圆的半径)?为什么?请以任意三角形为例说明(如图12).
通过以上猜想你可得到什么样的结论?请写出来.

查看答案和解析>>

我们平常的数都是十进制数,表示十进制的数要用10个数码(也叫数字):0,1,2,3,4,5,6,7,8,9.在电子计算机中用的是二进制数,只有两个数码0和1.二进制数和十进制数之间可仿照例1,例2的规律转换,例1、如二进制数101(2)=1×22+0×21+1=5,故二进制的101(2)等于十进制的数5;例2、如二进制数10101(2)=1×24+0×23+1×22+0×21+1=21,故二进制的10101(2)等于十进制的数21,那么二进制的110111(2)等于十进制的数(  )

查看答案和解析>>

归纳猜想:同学们,让我们一起进行一次研究性学习:
(1)如图1已知正三角形ABC的中心为O,半径为R,将其沿直线l向右翻滚,当正三角形翻滚一周时,其中心O经过的路程是多少?

(2)如图2将半径为R的正方形沿直线l向右翻滚,当正方形翻滚一周时,其中心O经过的路程是多少?

(3)猜想:把正多边形翻滚一周,其中心O所经过的路程是多少(R为正多边形的半径,可参看图2)?请说明理由.

(4)进一步猜想:任何多边形都有一个外接圆,若将任意圆内接多边形翻滚一周时,其外心所经过的路程是否是一个定值(R为多边形外接圆的半径)?为什么?请以任意三角形为例说明(如图12).
通过以上猜想你可得到什么样的结论?请写出来.

查看答案和解析>>

归纳猜想:同学们,让我们一起进行一次研究性学习:
(1)如图1已知正三角形ABC的中心为O,半径为R,将其沿直线l向右翻滚,当正三角形翻滚一周时,其中心O经过的路程是多少?

(2)如图2将半径为R的正方形沿直线l向右翻滚,当正方形翻滚一周时,其中心O经过的路程是多少?

(3)猜想:把正多边形翻滚一周,其中心O所经过的路程是多少(R为正多边形的半径,可参看图2)?请说明理由.

(4)进一步猜想:任何多边形都有一个外接圆,若将任意圆内接多边形翻滚一周时,其外心所经过的路程是否是一个定值(R为多边形外接圆的半径)?为什么?请以任意三角形为例说明(如图12).
通过以上猜想你可得到什么样的结论?请写出来.

查看答案和解析>>


同步练习册答案