题目列表(包括答案和解析)
设
是定义在
上的函数,若存在![]()
,使得
在
上单调递增,在
上单调递减,则称
为
上的单峰函数,
为峰点,包含峰点的区间为含峰区间. 对任意的
上的单峰函数
,下面研究缩短其含峰区间长度的方法.
(1)证明:对任意的![]()
,
,若
,则
为含峰区间;若
,则
为含峰区间;
(2)对给定的
,证明:存在![]()
,满足
,使得由(1)所确定的含峰区间的长度不大于
;
设
是定义在
上的函数,若存在![]()
,使得
在
上单调递增,在
上单调递减,则称
为
上的单峰函数,
为峰点,包含峰点的区间为含峰区间. 对任意的
上的单峰函数
,下面研究缩短其含峰区间长度的方法.
(1)证明:对任意的![]()
,
,若
,则
为含峰区间;若
,则
为含峰区间;
(2)对给定的
,证明:存在![]()
,满足
,使得由(1)所确定的含峰区间的长度不大于
;
设
是定义在
上的函数,用分点
![]()
将区间
任意划分成个小区间,如果存在一个常数
,使得和式
(
)恒成立,则称
为
上的有界变差函数.
(1)函数
在
上是否为有界变差函数?请说明理由;
(2)设函数
是
上的单调递减函数,证明:
为
上的有界变差函数;
(3)若定义在
上的函数
满足:存在常数
,使得对于任意的
、
时,
.证明:
为
上的有界变差函数.
(本小题满分14分)
设
是定义在
上的函数,用分点![]()
将区间
任意划分成
个小区间,如果存在一个常数
,使得和式
(
)恒成立,则称
为
上的有界变差函数.
(1)函数
在
上是否为有界变差函数?请说明理由;
(2)设函数
是
上的单调递减函数,证明:
为
上的有界变差函数;
(3)若定义在
上的函数
满足:存在常数
,使得对于任意的
、
时,
.证明:
为
上的有界变差函数.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com