题目列表(包括答案和解析)
(本小题满分12分)已知
,设命题
:函数
在
上单调递增;命题
:不等式
对
恒成立。若
为真命题,
为假命题,求实数
的取值范围。
(本小题满分12分)
已知点
是区域
,(
)内的点,目标函数
,
的最大值记作
.若数列
的前
项和为
,
,且点(
)在直线
上.
(Ⅰ)证明:数列
为等比数列;
(Ⅱ)求数列
的前
项和
.
(本小题满分12分)已知函数y=|cosx+sinx|.
(1)画出函数在x∈[-
,
]上的简图;
(2)写出函数的最小正周期和在[-
,
]上的单调递增区间;试问:当x在R上取何值
时,函数有最大值?最大值是多少?
(3)若x是△ABC的一个内角,且y2=1,试判断△ABC的形状.
(本小题满分12分)已知函数f(x)=x3+x2-2.
(1)设{an}是正数组成的数列,前n项和为Sn,其中a1=3.若点(an,an+12-2an+1)(n∈N*)在函数y=f′(x)的图象上,求证:点(n,Sn)也在y=f′(x)的图象上;
(2)求函数f(x)在区间(a-1,a)内的极值.
(本小题满分12分)已知函数f(x)=
;
(Ⅰ)证明:函数f(x)在
上为减函数;
(Ⅱ)是否存在负数
,使得
成立,若存在求出
;若不存在,请说明理由。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com