题目列表(包括答案和解析)
(本小题满分14分)
已知函数
,
,
.
(Ⅰ)若曲线
与曲线
相交,且在交点处有相同的切线,求
的值及该切线的方程;
(Ⅱ)设函数
,当
存在最小值时,求其最小值
的解析式;
(Ⅲ)对(Ⅱ)中的
,证明:当
时,
.
(本小题满分14分)
已知函数
,
.
(1)如果函数
在
上是单调增函数,求
的取值范围;
(2)是否存在实数
,使得方程
在区间
内有且只有两个不相等的实数根?若存在,请求出
的取值范围;若不存在,请说明理由.
(本小题满分14分)
已知函数
,在定义域内有且只有一个零点,存在
, 使得不等式
成立. 若
,
是数列
的前
项和.
(I)求数列
的通项公式;
(II)设各项均不为零的数列
中,所有满足
的正整数
的个数称为这个数列
的变号数,令
(n为正整数),求数列
的变号数;
(Ⅲ)设
(
且
),使不等式
恒成立,求正整数
的最大值.
(本小题满分14分) 已知函数
及正整数数列
. 若
,且当
时,有
; 又
,
,且
对任意
恒成立. 数列
满足:
.
(1) 求数列
及
的通项公式;
(2) 求数列
的前
项和
;
(3) 证明存在
,使得
对任意
均成立.
(本小题满分14分)
已知函数f(x)=
,g(x)=alnx,a
R。
若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值及该切线的方程;
设函数h(x)=f(x)- g(x),当h(x)存在最小之时,求其最小值
(a)的解析式;
对(2)中的
(a),证明:当a
(0,+
)时,
(a)
1.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com