解:(1)如图.直线即为所求3分(作图正确.不写结论不扣分) (2)图2能画一条直线分割成两个等腰三角形. 4分 分割成的两个等腰三角形的顶角分别是和. 5分 图3不能分割成两个等腰三角形. 6分 查看更多

 

题目列表(包括答案和解析)

如图,AD为⊙O的直径,作⊙O的内接等边三角形ABC.黄皓、李明两位同学的作法分别是:
黄皓:1.作OD的垂直平分线,交⊙O于B,C两点,
      2.连接AB,AC,△ABC即为所求的三角形.
李明:1.以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点,
      2.连接AB,BC,CA,△ABC即为所求的三角形.
已知两位同学的作法均正确,请选择其中一种作法补全图形,并证明△ABC是等边三角形.
解:我选择
黄皓
黄皓
的作法.
证明:

查看答案和解析>>

阅读下面的材料,并回答所提出的问题:如图所示,在锐角三角形ABC中,求证:
b
sinB
=
c
sinC

这个三角形不是一个直角三角形,不能直接使用锐角三角函数的知识去处理,所以必须构造直角三角形,精英家教网过点A作AD⊥BC,垂足为D,则在Rt△ABD和Rt△ACD中由正弦定义可完成证明.
解:如图,过点A作AD⊥BC,垂足为D,
在Rt△ABD中,sinB=
AD
AB
,则AD=csinB
Rt△ACD中,sinC=
AD
AC
,则AD=bsinC
所以c sinB=b sinC,即
b
sinB
=
c
sinC

(1)在上述分析证明过程中,主要用到了下列三种数学思想方法的哪一种(  )
A、数形结合的思想;B、转化的思想;C、分类的思想
(2)用上述思想方法解答下面问题.
在△ABC中,∠C=60°,AC=6,BC=8,求AB和△ABC的面积.
(3)用上述结论解答下面的问题(不必添加辅助线)
在锐角三角形ABC中,AC=10,AB=5
6
,∠C=60°,求∠B的度数.

查看答案和解析>>

阅读下列材料:
小明遇到一个问题:2个同样大小的正方形纸片排列形式如图①所示,将它们分割后拼接成一个新的正方形.
他的作法是:沿对角线剪开,按图②所示的方法,即可拼接成一个新的正方形DENB.
(1)请你参考小明的作法解决下面问题:
现有个边长分别为2,1的正方形纸片,排列形式如图③所示.请将其分割后拼接成一个新的正方形.要求:在图③,④中分别画出两个拼接成的新的正方形(说明:只要是符合条件的正方形即可,但要求分割方法有所不同)
精英家教网精英家教网精英家教网
(2)求出拼接后正方形的面积;
(3)如图⑤,点E、F、G、H是正方形ABCD各边的中点,要使得中间阴影部分小正方形的面积是5,那么大正方形ABCD的边长应该是多少?(直接写出结果).

查看答案和解析>>

阅读下列材料:
小明遇到一个问题:2个同样大小的正方形纸片排列形式如图①所示,将它们分割后拼接成一个新的正方形.
他的作法是:沿对角线剪开,按图②所示的方法,即可拼接成一个新的正方形DENB.
(1)请你参考小明的作法解决下面问题:
现有个边长分别为2,1的正方形纸片,排列形式如图③所示.请将其分割后拼接成一个新的正方形.要求:在图③,④中分别画出两个拼接成的新的正方形(说明:只要是符合条件的正方形即可,但要求分割方法有所不同)

(2)求出拼接后正方形的面积;
(3)如图⑤,点E、F、G、H是正方形ABCD各边的中点,要使得中间阴影部分小正方形的面积是5,那么大正方形ABCD的边长应该是多少?(直接写出结果).

查看答案和解析>>

问题背景:在△ABC中,AB、BC、AC三边的长分别为数学公式数学公式数学公式,求这个三角形的面积.
佳佳同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需要求△ABC的高,而借用网格就能计算出它的面积.
(1)请你将△ABC的面积直接填写在横线上______;
(2)请在图①中作出△ABC关于点O对称的图形△A1B1C1
(3)画△DEF,DE、EF、DF三边的长分别为数学公式数学公式数学公式,并判断这个三角形的形状,说明理由.

查看答案和解析>>


同步练习册答案