5.(x-)9的展开式的第3项是( ) A.-84x3 B.84x3 C.-36x5 D.36x5 答案:D 解析:依题意得(x-)9的展开式的通项Tr+1=C·x9-r(-)r=C·(-1)r·x9-2r.其展开式的第三项是T3=C·(-1)2·x5=36x5.选D. 查看更多

 

题目列表(包括答案和解析)

(2009•成都模拟)(文)已知甲,乙两名射击运动员各自独立地射击1次命中10环的概率分别为
1
2
2
3

(I)求乙在第3次射击时(每次射击相互独立)才首次命中10环的概率;
(II)若甲乙两名运动员各自独立地射击1次,求两人中恰有一人命中10环的概率.

查看答案和解析>>

(2009•成都二模)已知空间向量
OA
=(1,K,0)(k∈Z)
|
OA
| ≤3
OB
=(3,1,0)
,O为坐标原点,给出以下结论:①以OA、OB为邻边的平行四边形OACB中,当且仅当k=2时,|
OC
|
取得最小值;②当k=2时,到A和点B等距离的动点P(x,y,z)的轨迹方程为4x-2y-5=0,其轨迹是一条直线;③若
OP
=(0,0,1)
,则三棱锥O-ABP体积的最大值为
7
6
;④若
OP
=(0,0,1),则三棱锥O-ABP各个面都为直角三角形的概率为
2
5
.其中,所有正确结论的应是

查看答案和解析>>

(2009•成都二模)在平面直角坐标系xOy中,Rt△ABC的斜边BC恰在x轴上,点B(-2,0),C(2,0)且AD为BC边上的高.
(I)求AD中点G的轨迹方程;
(Ⅱ)若一直线与(I)中G的轨迹交于两不同点M、N,且线段MN恰以点(-1,
1
4
)为中点,求直线MN的方程;
(Ⅲ)若过点(1,0)的直线l与(I)中G的轨迹交于两不同点P、Q试问在x轴上是否存在定点E(m,0),使
PE
QE
恒为定值λ?若存在,求出点E的坐标及实数λ的值;若不存在,请说明理由.

查看答案和解析>>

(2010•成都一模)把正整数排列成如图甲三角形数阵,然后擦去第偶数行中的奇数和第奇数行中的偶数,得到如图乙的三角形数阵,再把图乙中的数按从小到大的顺序排成一列,得到一个数列{an},若an=2009,则n=(  )

查看答案和解析>>

(2009•成都模拟)已知椭圆的两个焦点F1(0,1)、F2(0,1)、直线y=4是它的一条准线,A1、A2分别是椭圆的上、下两个顶点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设以原点为顶点,A1点的抛物线为C,若过点F1的直线l与C交于不同的两点M、N,求线段MN的中点Q的轨迹方程.

查看答案和解析>>


同步练习册答案