数列极限的运算法则 如果an=A.bn=B.那么(1)(an±bn)=A±B (2)(an·bn)=A·B (3)= 极限不存在的情况是1.,2.极限值不唯一.跳跃.如1.-1.1.-1-. 注意:数列极限运算法则运用的前提: (1)参与运算的各个数列均有极限; (2)运用法则,只适用于有限个数列参与运算,当无限个数列参与运算时不能首先套用. 查看更多

 

题目列表(包括答案和解析)

数列{an}的构成法则如下:a1=1,如果an-2为自然数且之前未出现过,则用递推公式an+1=an-2.否则用递推公式an+1=3an,则a6=
15
15

查看答案和解析>>

阅读:设Z点的坐标(a,b),r=|
OZ
|,θ是以x轴的非负半轴为始边、以OZ所在的射线为终边的角,复数z=a+bi还可以表示为z=r(cosθ+isinθ),这个表达式叫做复数z的三角形式,其中,r叫做复数z的模,当r≠0时,θ叫做复数z的幅角,复数0的幅角是任意的,当0≤θ<2π时,θ叫做复数z的幅角主值,记作argz.
根据上面所给出的概念,请解决以下问题:
(1)设z=a+bi=r(cosθ+isinθ) (a、b∈R,r≥0),请写出复数的三角形式与代数形式相互之间的转换关系式;
(2)设z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2),探索三角形式下的复数乘法、除法的运算法则,请写出三角形式下的复数乘法、除法的运算法则.(结论不需要证明)

查看答案和解析>>

由代数式的乘法法则类比推导向量的数量积的运算法则:
①“mn=nm”类比得到“
a
b
=
b
a
”;
②“(m+n)t=mt+nt”类比得到“(
a
+
b
)•
c
=
a
c
+
b
c
”;
③“(m•n)t=m(n•t)”类比得到“(
a
b
c
=
a
•(
b
c
)”;
④“t≠0,mt=xt⇒m=x”类比得到“
p
0
a
p
=
x
p
a
=
x
”;
⑤“|m•n|=|m|•|n|”类比得到“|
a
b
|=|
a
|•
|b
|
”;
⑥“
ac
bc
=
a
b
”类比得到“
a
c
b
c
=
a
b
”.
以上式子中,类比得到的结论正确的个数是(  )

查看答案和解析>>

由代数式的乘法法则类比推导向量的数量积的运算法则?:
①“mn=nm”类比得到“
a
b
=
b
a
”;
②“(m+n)t=mt+nt”类比得到“(
a
+
b
)•
c
=
a
c
+
b
c
”;
③“(m•n)t=m(n•t)”类比得到“(
a
b
)•
c
=
a
•(
b
c
)”;
④“t≠0,mt=xt⇒m=x”类比得到“
p
0
a
p
=
x
p
a
=
x
”;
⑤“|m•n|=|m|•|n|”类比得到“|
a
b
|=|
a
|•|
b
|?”;
以上式子中,类比得到的结论正确的个数是(  )

查看答案和解析>>

由代数式的乘法法则类比推导向量的数量积的运算法则:
①“mn=nm”类比得到“
a
b
=
b
a

②“(m+n)t=mt+nt”类比得到“(
a
+
b
)•
c
=
a
+
b
c
”;
③“t≠0,mt=nt⇒m=n”类比得到“
c
≠0,
a
c
=
b
c
a
=
c
”;
④“|m•n|=|m|•|n|”类比得到“|
a
b
|=|
a
|•|
b
|”;
⑤“(m•n)t=m(n•t)”类比得到“(
a
b
)•
c
=
a
•(
b
c
)
”;
⑥“
ac
bc
=
a
b
”类比得到
a
c
b
c
=
b
a
.     以上的式子中,类比得到的结论正确的是
①②
①②

查看答案和解析>>


同步练习册答案