A.AB B. C. D. 查看更多

 

题目列表(包括答案和解析)

精英家教网A.(选修4-4坐标系与参数方程)已知点A是曲线ρ=2sinθ上任意一点,则点A到直线ρsin(θ+
π3
)=4
的距离的最小值是
 

B.(选修4-5不等式选讲)不等式|x-log2x|<x+|log2x|的解集是
 

C.(选修4-1几何证明选讲)如图所示,AC和AB分别是圆O的切线,且OC=3,AB=4,延长AO到D点,则△ABD的面积是
 

查看答案和解析>>

精英家教网A.(不等式选做题)不等式|
x+2
x+1
|≤1的实数解集为
 

B.(几何证明选做题)如图,在△ABC中,AB=AC,以BC为直径的半圆O与边AB相交于点D,切线DE⊥AC,垂足为点E.则
AE
CE
=
 

C.(坐标系与参数方程选做题)若△ABC的底边BC=10,∠B=2∠A,以B点为极点,BC 为极轴,则顶点A 的极坐标方程为
 

查看答案和解析>>

精英家教网A.如图,四边形ABCD内接于⊙O,弧AB=弧AD,过A点的切线交CB的延长线于E点.
求证:AB2=BE•CD.
B.已知矩阵M
2-3
1-1
所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标.
C.已知圆的极坐标方程为:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(1)将圆的极坐标方程化为直角坐标方程;
(2)若点P(x,y)在该圆上,求x+y的最大值和最小值.
D.解不等式|2x-1|<|x|+1.

查看答案和解析>>

A.选修4-1:几何证明选讲
如图,直角△ABC中,∠B=90°,以BC为直径的⊙O交AC于点D,点E是AB的中点.
求证:DE是⊙O的切线.
B.选修4-2:矩阵与变换
已知二阶矩阵A有特征值-1及其对应的一个特征向量为
1
-4
,点P(2,-1)在矩阵A对应的变换下得到点P′(5,1),求矩阵A.
C.选修4-4:坐标系与参数方程
在直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.已知直线l的极坐标方程为ρcos(θ-
π
4
)=
2
,曲线C的参数方程为
x=2cosα
y=sinα
(α为参数),求曲线C截直线l所得的弦长.
D.选修4-5:不等式选讲
已知a,b,c都是正数,且abc=8,求证:log2(2+a)+log2(2+b)+log2(2+c)≥6.

查看答案和解析>>

A.选修4-1:几何证明选讲
如图,△ABC的外接圆的切线AE与BC的延长线相交于点E,∠BAC的平分线与BC
交于点D.求证:ED2=EB•EC.
B.选修4-2:矩阵与变换
求矩阵M=
-14
26
的特征值和特征向量.
C.选修4-4:坐标系与参数方程
在以O为极点的极坐标系中,直线l与曲线C的极坐标方程分别是ρcos(θ+
π
4
)=
3
2
2
和ρsin2θ=4cosθ,直线l与曲线C交于点.A,B,C,求线段AB的长.
D.选修4-5:不等式选讲
对于实数x,y,若|x-1|≤1,|y-2|≤1,求|x-y+1|的最大值.

查看答案和解析>>

一、选择题

20080422

二、填空题

13.2    14.   15.   16.①③④

三、解答题

17.解:(1)……………………3分

……………………6分

(2)因为

………………9分

……………………12分

文本框:  18.方法一:

(1)证明:连结BD,

∵D分别是AC的中点,PA=PC=

∴PD⊥AC,

∵AC=2,AB=,BC=

∴AB2+BC2=AC2

∴∠ABC=90°,即AB⊥BC.…………2分

∴BD=

∵PD2=PA2―AD2=3,PB

∴PD2+BD2=PB2

∴PD⊥BD,

∵ACBD=D

∴PD⊥平面ABC.…………………………4分

(2)解:取AB的中点E,连结DE、PE,由E为AB的中点知DE//BC,

∵AB⊥BC,

∴AB⊥DE,

∵DE是直线PE的底面ABC上的射景

∴PE⊥AB

∴∠PED是二面角P―AB―C的平面角,……………………6分

在△PED中,DE=∠=90°,

∴tan∠PDE=

∴二面角P―AB―C的大小是

(3)解:设点E到平面PBC的距离为h.

∵VP―EBC=VE―PBC

……………………10分

在△PBC中,PB=PC=,BC=

而PD=

∴点E到平面PBC的距离为……………………12分

方法二:

(1)同方法一:

过点D作AB的平行线交BC于点F,以D为

原点,DE为x轴,DF为y轴,

DP为z轴,建立如图所示的空间直角坐标系.

则D(0,0,0),P(0,0,),

E(),B=(

上平面PAB的一个法向量,

则由

这时,……………………6分

显然,是平面ABC的一个法向量.

∴二面角P―AB―C的大小是……………………8分

(3)解:

平面PBC的一个法向量,

是平面PBC的一个法向量……………………10分

∴点E到平面PBC的距离为………………12分

19.解:(1)由题设,当价格上涨x%时,销售总金额为:

   (2)

……………………3分

当x=50时,

即该吨产品每吨的价格上涨50%时,销售总最大.……………………6分

(2)由(1)

如果上涨价格能使销假售总金额增加,

则有……………………8分

即x>0时,

注意到m>0

  ∴   ∴

∴m的取值范围是(0,1)…………………………12分

20.解(1)由已知,抛物线,焦点F的坐标为F(0,1)………………1分

l与y轴重合时,显然符合条件,此时……………………3分

l不与y轴重合时,要使抛物线的焦点F与原点O到直线l的距离相等,当且仅当直线l通过点()设l的斜率为k,则直线l的方程为

由已知可得………5分

解得无意义.

因此,只有时,抛物线的焦点F与原点O到直线l的距离相等.……7分

(2)由已知可设直线l的方程为……………………8分

则AB所在直线为……………………9分

代入抛物线方程………………①

的中点为

代入直线l的方程得:………………10分

又∵对于①式有:

解得m>-1,

l在y轴上截距的取值范围为(3,+)……………………12分

21.解:(1)由

……………………3分

又由已知

∴数列是以3为首项,以-1为公差的等差数列,且…………6分

(2)∵……………………8分

…………①

…………②………………10分

②―①得

……………………12分

22.解:(1)和[0,2]上有相反的单调性,

的一个极值点,故

   (2)令

因为和[4,5]上有相反的单调性,

和[4,5]上有相反的符号,

……………………7分

假设在点M在点M的切线斜率为3b,则

故不存在点M在点M的切线斜率为3b………………9分

   (3)∵的图象过点B(2,0),

,依题意可令

……………………12分

∴当

……………………14分