13.△ABE≌△DCE(SAS).∴∠AEB=∠DEC.而∠DAE=∠AEB.∠ADE=∠DEC.∴∠DAE=∠ADE.∴△ADE是等腰三角形 查看更多

 

题目列表(包括答案和解析)

(2013•保定一模)阅读:Rt△ABC和Rt△DBE,AB=BC,DB=EB,D在AB上,连接AE,AC,如图1
求证:AE=CD,AE⊥CD.
证明:延长CD交AE于K
在△AEB和△CDB中
∠ABE=∠CBD=90°
AB=BC
BE=DB

∴△AEB≌△CDB(SAS)
∴AE=CD
∠EAB=∠DCB
∵∠DCB+∠CDB=90°
∠ADK=∠CDB
∴∠ADK+∠DAK=90°
∴∠ADK=90°
∴AE⊥CD
(2)类比:若关系和位置关系还成立吗?若成立,请给与证明;若不成立,请说明理由.将(1)中的Rt△DBE绕点逆时针旋转一个锐角,如图2所示,问(1)中线段AE,CD间的数量;
(3)拓展:在图2中,将“AB=BC,DB=EB”改成“BC=kAB,DB=kEB,k>1”其它条件均不变,如图3所示,问(1)中线段AE,CD间的数量关系和位置关系还成立吗?若成立,请给与证明;若不成立,请说明理由.

查看答案和解析>>

(2013•舟山)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.
(1)求证:△ABE≌DCE;
(2)当∠AEB=50°,求∠EBC的度数?

查看答案和解析>>

如图,下面四个条件中,请你以其中两个为已知条件,第三个为结论,推出一个正确的命题,并加以证明:①AE=AD;②AB=AC;③BE=CD;④∠B=∠C.
已知:如图,
AE=AD,AB=AC
AE=AD,AB=AC

求证:
BE=CD
BE=CD
(写序号即可)
证明:
∵在△AEB和△ADC中
AE=AD
∠A=∠A
AC=AB

∴△ABE≌△ACD(SAS),
∴BE=CD.
∵在△AEB和△ADC中
AE=AD
∠A=∠A
AC=AB

∴△ABE≌△ACD(SAS),
∴BE=CD.

查看答案和解析>>

如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.

(1)求证:△ABE≌DCE;

(2)当∠AEB=50°,求∠EBC的度数。

 

查看答案和解析>>

如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.

(1)求证:△ABE≌DCE;

(2)当∠AEB=50°,求∠EBC的度数。

 

查看答案和解析>>


同步练习册答案