(3)存在.使是奇函数, 查看更多

 

题目列表(包括答案和解析)

奇函数f(x)=
ax2+bx+1
cx+d
 (x≠0,a>1)
,且当x>0时,f(x)有最小值2
2
,又f(1)=3.
(1)求f(x)的表达式;
(2)设g(x)=xf(x),正数数列{an}中,a1=1,an+12=g(an),求数列{an}的通项公式;
(3)设h(x)=
1
2
f(x)-
3
2x
,数列{bn}中b1=m(m>0),bn+1=h(bn)(n∈N*).是否存在常数m使bn•bn+1>0对任意n∈N*恒成立.若存在,求m的取值范围,若不存在,说明理由.

查看答案和解析>>

奇函数,且当x>0时,f(x)有最小值,又f(1)=3.
(1)求f(x)的表达式;
(2)设g(x)=xf(x),正数数列{an}中,a1=1,an+12=g(an),求数列{an}的通项公式;
(3)设,数列{bn}中b1=m(m>0),bn+1=h(bn)(n∈N*).是否存在常数m使bn•bn+1>0对任意n∈N*恒成立.若存在,求m的取值范围,若不存在,说明理由.

查看答案和解析>>

奇函数数学公式,且当x>0时,f(x)有最小值数学公式,又f(1)=3.
(1)求f(x)的表达式;
(2)设g(x)=xf(x),正数数列{an}中,a1=1,an+12=g(an),求数列{an}的通项公式;
(3)设数学公式,数列{bn}中b1=m(m>0),bn+1=h(bn)(n∈N*).是否存在常数m使bn•bn+1>0对任意n∈N*恒成立.若存在,求m的取值范围,若不存在,说明理由.

查看答案和解析>>

已知奇函数f(x)的定义域为R,且f(x)在[0,+∞)上是增函数,是否存在实数m使得f(cos2θ-3)+f(4m-2mcosθ)>f(0),对一切θ∈[0,
π2
]
都成立?若存在,求出实数m的取值范围;若不存在,请说明理由.

查看答案和解析>>

设函数f(x)的定义域D关于原点对称,0∈D,且存在常数a>0,使f(a)=1,又f(x1-x2)=
f(x1)-f(x2)1+f(x1)f(x2)

(1)写出f(x)的一个函数解析式,并说明其符合题设条件;
(2)判断并证明函数f(x)的奇偶性;
(3)若存在正常数T,使得等式f(x)=f(x+T)或者f(x)=f(x-T)对于x∈D都成立,则都称f(x)是周期函数,T为周期;试问f(x)是不是周期函数?若是,则求出它的一个周期T;若不是,则说明理由.

查看答案和解析>>

一、选择

1.A 2.B 3.B 4.D 5.(理)C (文)A 6.B 7.A 8.B 9.A 

10.B 11.(理)A (文)C 12.B 

二、填空

13.(理) (文)25,60,15 14.-672 15.2.5小时 16.(理)①,④(文)(1),;(1),;(4),

三、解答题

  17.解析:设fx)的二次项系数为m,其图象上两点为(1-x)、B(1+x)因为,所以,由x的任意性得fx)的图象关于直线x=1对称,若m>0,则x≥1时,fx)是增函数,若m<0,则x≥1时,fx)是减函数.

  ∵ 

  ∴ 当时,

  ∵ , ∴ 

  当时,同理可得

  综上:的解集是当时,为

  当时,为,或

  18.解析:(理)(1)设甲队在第五场比赛后获得冠军为事件M,则第五场比赛甲队获胜,前四场比赛甲队获胜三场

  依题意得

  (2)设甲队获得冠军为事件E,则E包含第四、第五、第六、第七场获得冠军四种情况,且它们被彼此互斥.

  ∴ 

(文)①设甲袋中恰有两个白球为事件A

 

②设甲袋内恰好有4个白球为事件B,则B包含三种情况.

甲袋中取2个白球,且乙袋中取2个白球,②甲袋中取1个白球,1个黑球,且乙袋中取1个白球,1个黑球,③甲、乙两袋中各取2个黑球.

∴ 

  19.解析:(1)取中点E,连结ME

  ∴ MCEC. ∴ MC. ∴ MCN四点共面.

  (2)连结BD,则BD在平面ABCD内的射影.

  ∵ , ∴ Rt△CDM~Rt△BCD,∠DCM=∠CBD

  ∴ ∠CBD+∠BCM=90°.  ∴ MCBD.  ∴ 

  (3)连结,由是正方形,知

  ∵ MC, ∴ ⊥平面

  ∴ 平面⊥平面

  (4)∠与平面所成的角且等于45°.

  20.解析:(1)

  ∵ x≥1. ∴ 

  当x≥1时,是增函数,其最小值为

  ∴ a<0(a=0时也符合题意). ∴ a≤0.

  (2),即27-6a-3=0, ∴ a=4.

  ∴ 有极大值点,极小值点

  此时fx)在上时减函数,在,+上是增函数.

  ∴ fx)在上的最小值是,最大值是,(因).

  21.解析:(1)∵ 斜率k存在,不妨设k>0,求出M,2).直线MA方程为,直线MB方程为

  分别与椭圆方程联立,可解出

  ∴ . ∴ (定值).

  (2)设直线AB方程为,与联立,消去y

  由D>0得-4<m<4,且m≠0,点MAB的距离为

  设△AMB的面积为S. ∴ 

  当时,得

  22.解析:(1)∵ a

  ∴   ∴   ∴ 

  ∴ 

  ∴ a=2或a=3(a=3时不合题意,舍去). ∴a=2.

  (2),由可得

  . ∴ 

  ∴ b=5

  (3)由(2)知, ∴ 

  ∴ . ∴ 

  ∵ 

  当n≥3时,

  

     

  

  

  ∴ . 综上得 

 

 


同步练习册答案