在x=1和x=3处取得极值.且在x∈[-6.6]时.函数的图象在 查看更多

 

题目列表(包括答案和解析)

若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点。已知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个极值点。
(1)求a和b的值;
(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点;
(3)设h(x)=f(f(x))-c,其中c∈[-2,2],求函数y=h(x)的零点个数。

查看答案和解析>>

若函数y=f(x)在x=x处取得极大值或极小值,则称x为函数y=f(x)的极值点.已知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个极值点.
(1)求a和b的值;
(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点;
(3)设h(x)=f(f(x))-c,其中c∈[-2,2],求函数y=h(x)的零点个数.

查看答案和解析>>

若函数y=f(x)在x=x处取得极大值或极小值,则称x为函数y=f(x)的极值点.已知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个极值点.
(1)求a和b的值;
(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点;
(3)设h(x)=f(f(x))-c,其中c∈[-2,2],求函数y=h(x)的零点个数.

查看答案和解析>>

设函数f(x)=2ax-bx2+lnx.给出下列条件,条件A:f(x)在x=1 和x=
1
2
处取得极值;条件B:b=a
(Ⅰ)在A条件下,求出实数a,b的值;
(Ⅱ) 在A条件下,对于在[
1
e
,3
]上的任意x0,不等式f(x0)-c≤0恒成立,求实数c的最小值;
(Ⅲ) 在B条件下,若f(x)在(0,+∞)上是单调函数,求实数a的取值范围.

查看答案和解析>>

已知函数f(x)=x3-ax2+bx+c.
(Ⅰ)若函数y=f(x)的图象上存在点P,使P点处的切线与x轴平行,求实数a,b的关系式;
(Ⅱ)若函数f(x)在x=-1和x=3时取得极值,且其图象与x轴有且只有3个交点,求实数c的取值范围.

查看答案和解析>>

 

一、选择题(每小题5分,共12小题,满分60分)

2,4,6

二、填空题(每小题4分,共4小题,满分16分)

13.     14.84      15.

16.

三、解答题

17.解:(1)…………………………2分

(2)由题意,令

∴从晚上1点至5点,或上午13点至17点,为所求时间,共8小时,……12分

18.解:由框图可知

 

(1)由题意可知,k=5时,

(3)由(2)可得:

19.证明:(1)连结AC、BD、A1C1则AC、BD的交点,O1

∴四边形ACC1A1为平行四边形,

∴四边形A1O1CO为平行四边形…………2分

∴A1O//CO1

∵A1O⊥平面ABCD

∴O1C⊥平面ABCD…………………………4分

∵O1C平面O1DC

∴存在点平面O1DC⊥平面ABCD……………5分

(2)F为BC的三等分点B(靠近B)时,有EF⊥BC……………………6分

过点E作EH⊥AC于H,连FH、EF//A1O

∵平面A1AO⊥平面ABCD

∴EH⊥平面ABCD

又BC平面ABCD   ∴BC⊥EH ①

∴HF//AB     ∴HF⊥BC, ②

由①②知,BC⊥平面EFH

∵EF平面EFH    ∴EF⊥BC…………………………12分

20.解:(1)当0<x≤10时,

(2)①当0<x≤10时,

②当x>10时,

(万元)

(当且仅当时取等号)……………………………………………………10分

综合①②知:当x=9时,y取最大值………………………………………………11分

故当年产量为9万件时,服装厂在这一品牌服装的生产中获年利润最大…………12分

21.解:(1)

又x1,x2是函数f(x)的两个极值点,则x1,x2的两根,

(2)由题意,

22.解:(1)设椭圆方程为………………………………1分

………………………………………………3分

∴椭圆方程为…………………………………………………………4分

(2)∵直线l平行于OM,且在y轴上的截距为m

又KOM=

……………………………………………………5分

……………………………………6分

∵直线l与椭圆交于A、B两个不同点,

(3)设直线MA、MB的斜率分别为k1,k2,只需证明k1+k2=0即可…………9分

……………………10分

……………………………………………………10分

故直线MA、MB与x轴始终围成一个等腰三角形.……………………14分