22.如图.已知椭圆的中心在原点.焦点在x轴上.长轴长是短轴长的2倍且经过点M(2.1).平行于OM的直线l在y轴上的截距为m.l交椭圆于A.B两个不同点. (1)求椭圆的方程, (2)求m的取值范围, (3)求证直线MA.MB与x轴始终围成一个等腰三角形. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)如图,已知椭圆C,经过椭圆C的右焦点F且斜率为kk≠0)的直线l交椭圆C于A、B两点,M为线段AB的中点,设O为椭圆的中心,射线OM交椭圆于N点.(1)是否存在k,使对任意m>0,总有成立?若存在,求出所有k的值;

       (2)若,求实数k的取值范围.

查看答案和解析>>

(本小题满分12分)

如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线与椭圆的交点分别为.

(Ⅰ)求椭圆和双曲线的标准方程;

(Ⅱ)设直线的斜率分别为,证明

(Ⅲ)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

(本小题满分12分)

如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线与椭圆的交点分别为.

(Ⅰ)求椭圆和双曲线的标准方程;

(Ⅱ)设直线的斜率分别为,证明

(Ⅲ)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

(本小题满分12分)

如图,已知椭圆过点,两个焦点分别为为坐标原点,平行于的直线交椭圆于不同的两点

(Ⅰ)求椭圆的方程;

(Ⅱ)试问直线的斜率之和是否为定值,若为定值,求出以线段为直径且过点的圆的方程;若不存在,说明理由.

查看答案和解析>>

(本小题满分12分)

如图,已知椭圆C1的中心在原点O,长轴左、右端点MNx轴上,椭圆C2的短轴为MN,且C1C2的离心率都为e,直线l⊥MN,lC1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为ABCD
(I)设,求的比值;
(II)当e变化时,是否存在直线l,使得BOAN,并说明理由.

查看答案和解析>>

 

一、选择题(每小题5分,共12小题,满分60分)

2,4,6

二、填空题(每小题4分,共4小题,满分16分)

13.     14.84      15.

16.

三、解答题

17.解:(1)…………………………2分

(2)由题意,令

∴从晚上1点至5点,或上午13点至17点,为所求时间,共8小时,……12分

18.解:由框图可知

 

(1)由题意可知,k=5时,

(3)由(2)可得:

19.证明:(1)连结AC、BD、A1C1则AC、BD的交点,O1

∴四边形ACC1A1为平行四边形,

∴四边形A1O1CO为平行四边形…………2分

∴A1O//CO1

∵A1O⊥平面ABCD

∴O1C⊥平面ABCD…………………………4分

∵O1C平面O1DC

∴存在点平面O1DC⊥平面ABCD……………5分

(2)F为BC的三等分点B(靠近B)时,有EF⊥BC……………………6分

过点E作EH⊥AC于H,连FH、EF//A1O

∵平面A1AO⊥平面ABCD

∴EH⊥平面ABCD

又BC平面ABCD   ∴BC⊥EH ①

∴HF//AB     ∴HF⊥BC, ②

由①②知,BC⊥平面EFH

∵EF平面EFH    ∴EF⊥BC…………………………12分

20.解:(1)当0<x≤10时,

(2)①当0<x≤10时,

②当x>10时,

(万元)

(当且仅当时取等号)……………………………………………………10分

综合①②知:当x=9时,y取最大值………………………………………………11分

故当年产量为9万件时,服装厂在这一品牌服装的生产中获年利润最大…………12分

21.解:(1)

又x1,x2是函数f(x)的两个极值点,则x1,x2的两根,

(2)由题意,

22.解:(1)设椭圆方程为………………………………1分

………………………………………………3分

∴椭圆方程为…………………………………………………………4分

(2)∵直线l平行于OM,且在y轴上的截距为m

又KOM=

……………………………………………………5分

……………………………………6分

∵直线l与椭圆交于A、B两个不同点,

(3)设直线MA、MB的斜率分别为k1,k2,只需证明k1+k2=0即可…………9分

……………………10分

……………………………………………………10分

故直线MA、MB与x轴始终围成一个等腰三角形.……………………14分