题目列表(包括答案和解析)
(本小题满分12分)二次函数
的图象经过三点
.![]()
(1)求函数
的解析式(2)求函数
在区间
上的最大值和最小值
(本小题满分12分)已知等比数列{an}中,
(Ⅰ)求数列{an}的通项公式an;
(Ⅱ)设数列{an}的前n项和为Sn,证明:
;
(本小题满分12分)已知函数
,其中a为常数.
(Ⅰ)若当
恒成立,求a的取值范围;
(本小题满分12分)
甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为
,乙投篮命中的概率为![]()
(Ⅰ)求甲至多命中2个且乙至少命中2个的概率;
(Ⅱ)若规定每投篮一次命中得3分,未命中得-1分,求乙所得分数η的概率分布和数学期望.(本小题满分12分)已知
是椭圆
的两个焦点,O为坐标原点,点
在椭圆上,且
,圆O是以
为直径的圆,直线
与圆O相切,并且与椭圆交于不同的两点A、B.
(1)求椭圆的标准方程;w.w.w.k.s.5.u.c.o.m
(2)当
时,求弦长|AB|的取值范围.
一、
二、
9.16 10.2009 11.
12.
13.
14.3
15.②③
三、
16.解:(1)由余弦定理得: 

是以角C为直角的直角三角形.……………………6分
(2)
中
………………①
………………②
②÷①得
,
则
……………………12分
17.解:(1)因为
……………………………………(2分)
……………………………………………………(4分)

所以线路信息通畅的概率为
。………………………(6分)
(2)
的所有可能取值为4,5,6,7,8。

……………………………………………………………(9分)
∴
的分布列为

4
5
6
7
8
P





…………………………………………………………………………………………(10分)
∴E
=4×
+5×
+6×
+7×
+8×
=6。……………………(12分)
18.解:解法一:(1)证明:连结OC,
∵
ABD为等边三角形,O为BD的中点,∴AO
垂直BD。………………………………………………………………(1分)
∴ AO=CO=
。………………………………………………………………………(2分)
在
AOC中,AC=
,∴AO2+CO2=AC2,
∴∠AOC=900,即AO⊥OC。
∴BD
OC=O,∴AO⊥平面BCD。…………………………………………………(3分)
(2)过O作OE垂直BC于E,连结AE,
∵AO⊥平面BCD,∴AE在平面BCD上的射影为OE。
∴AE⊥BC。
∠AEO为二面角A―BC―D的平面角。………………………………………(7分)
在Rt
AEO中,AO=
,OE=
,
∠
,
∴∠AEO=arctan2。
二面角A―BC―D的大小为arctan2。
(3)设点O到面ACD的距离为
∵VO-ACD=VA-OCD,
∴
。
在
ACD中,AD=CD=2,AC=
,
。
|