题目列表(包括答案和解析)
已知向量a=(x-1,2),b=(2,1),则a⊥b的充要条件是
A.x=-
B.x-1 C.x=5 D.x=0
【解析】有向量垂直的充要条件得2(x-1)+2=0,所以x=0.D正确.
已知向量
夹角为
,且
;则![]()
【解析】因为
,所以
,即
,所以
,整理得
,解得
或
(舍去).
如图,已知四棱锥
的底面ABCD为正方形,
平面ABCD,E、F分别是BC,PC的中点,
,
.
(1)求证:
平面
;
(2)求二面角
的大小.
![]()
【解析】第一问利用线面垂直的判定定理和建立空间直角坐标系得到法向量来表示二面角的。
![]()
第二问中,以A为原点,如图所示建立直角坐标系
,,
设平面FAE法向量为
,则![]()
,
,
![]()
如图,在三棱柱
中,
侧面
,
为棱
上异于
的一点,
,已知
,求:
(Ⅰ)异面直线
与
的距离;
(Ⅱ)二面角
的平面角的正切值.
【解析】第一问中,利用建立空间直角坐标系
解:(I)以B为原点,
、
分别为Y,Z轴建立空间直角坐标系.由于,![]()
![]()
在三棱柱
中有
,
设![]()
![]()
![]()
又
侧面
,故
. 因此
是异面直线
的公垂线,则
,故异面直线
的距离为1.
(II)由已知有
故二面角
的平面角
的大小为向量
与
的夹角.
![]()
已知正方体ABCD-A1B1C1D1,
O是底面ABCD对角线的交点.
(1)求证:A1C⊥平面AB1D1;
(2)求
.
![]()
【解析】(1)证明线面垂直,需要证明直线垂直这个平面内的两条相交直线,本题只需证:
即可.
(2)可以利用向量法,也可以根据平面A1ACC1与平面AB1D1垂直,可知取B1D1的中点E,则
就是直线AC与平面AB1D1所成的角.然后解三角形即可.
1.D

2.C 提示:画出满足条件A∪B=A∪C的文氏图,可知有五种情况,以观察其中一种,如图,显然只要图中阴影部分相等,B、C未必要相等,条件A∪B=A∪C仍可满足,对照四个选择支,A、B、D均可排除,故选C.
3.D
4.B 提示:由题意知,
M,
N,因此,
(
),又A∩B=
,故集合A、B的子集中没有相同的集合,可知M、N中没有其他的公共元素,故正确的答案是M∩N=
.
5.A 提示:由
得
,当
时,△
,
得
,当
时,△
,且
,即
所以
6.A 7.D 8.A
9.D提示:设3x2-4x-32<0的一个必要不充分条件是为Q,P=
.由题意知:P能推出Q,但Q不能推出P.也可理解为:P
Q.
10.A 11.B
12.D 提示:由
,又因为
是
的充分而不必要条件,所以
,即
。可知A=
或方程
的两根要在区间[1,2]内,也即以下两种情况:
(1)
;
(2)
;综合(1)、(2)可得
。
二、填空题
13.3 14.
w.w.w.k.s.5.u.c.o.m
15. -2≤x≤6 提示:由[x]2-3[x]-10≤0得-2≤[x] ≤5,则-2≤x≤6. 16. ①④
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com