题目列表(包括答案和解析)
已知二次函数
的二次项系数为
,且不等式
的解集为
,
(1)若方程
有两个相等的根,求
的解析式;
(2)若
的最大值为正数,求
的取值范围.
【解析】第一问中利用∵f(x)+2x>0的解集为(1,3),
设出二次函数的解析式,然后利用判别式得到a的值。
第二问中,
解:(1)∵f(x)+2x>0的解集为(1,3),
①
由方程![]()
②
∵方程②有两个相等的根,
∴
,
即5a2-4a-1=0,解得a=1(舍) 或 a=-1/5
a=-1/5代入①得:![]()
(2)由![]()
![]()
![]()
由
解得:
![]()
故当f(x)的最大值为正数时,实数a的取值范围是![]()
已知中心在原点,焦点在
轴上的椭圆
的离心率为
,且经过点![]()
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)是否存过点
(2,1)的直线
与椭圆
相交于不同的两点
,满足
?若存在,求出直线
的方程;若不存在,请说明理由.
【解析】第一问利用设椭圆
的方程为
,由题意得![]()
解得![]()
第二问若存在直线
满足条件的方程为
,代入椭圆
的方程得
.
因为直线
与椭圆
相交于不同的两点
,设
两点的坐标分别为
,
所以![]()
所以
.解得。
解:⑴设椭圆
的方程为
,由题意得![]()
解得
,故椭圆
的方程为
.……………………4分
⑵若存在直线
满足条件的方程为
,代入椭圆
的方程得
.
因为直线
与椭圆
相交于不同的两点
,设
两点的坐标分别为
,
所以![]()
所以
.
又
,
因为
,即
,
所以![]()
.
即
.
所以
,解得
.
因为A,B为不同的两点,所以k=1/2.
于是存在直线L1满足条件,其方程为y=1/2x
双曲线
的一条渐近线为
,由方程组
,消去y,得
有唯一解,所以△=
,
所以
,
,故选D. w.w.w.k.s.5.u.c.o.m
![]()
答案:D.
【命题立意】:本题考查了双曲线的渐近线的方程和离心率的概念,以及直线与抛物线的位置关系,只有一个公共点,则解方程组有唯一解.本题较好地考查了基本概念基本方法和基本技能.
| 1 |
| 4 |
| 3 |
| 4 |
| 5 |
| 4 |
| 1 |
| 4 |
| 3 |
| 4 |
| 5 |
| 4 |
1.D

2.C 提示:画出满足条件A∪B=A∪C的文氏图,可知有五种情况,以观察其中一种,如图,显然只要图中阴影部分相等,B、C未必要相等,条件A∪B=A∪C仍可满足,对照四个选择支,A、B、D均可排除,故选C.
3.D
4.B 提示:由题意知,
M,
N,因此,
(
),又A∩B=
,故集合A、B的子集中没有相同的集合,可知M、N中没有其他的公共元素,故正确的答案是M∩N=
.
5.A 提示:由
得
,当
时,△
,
得
,当
时,△
,且
,即
所以
6.A 7.D 8.A
9.D提示:设3x2-4x-32<0的一个必要不充分条件是为Q,P=
.由题意知:P能推出Q,但Q不能推出P.也可理解为:P
Q.
10.A 11.B
12.D 提示:由
,又因为
是
的充分而不必要条件,所以
,即
。可知A=
或方程
的两根要在区间[1,2]内,也即以下两种情况:
(1)
;
(2)
;综合(1)、(2)可得
。
二、填空题
13.3 14.
w.w.w.k.s.5.u.c.o.m
15. -2≤x≤6 提示:由[x]2-3[x]-10≤0得-2≤[x] ≤5,则-2≤x≤6. 16. ①④
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com