[点评]解答本题的关键是首先要根据题设条件判断命题与命题的真假.由此作出命题非与非的真假.命题的真假是通过求函数定义域来判断的.而命题的真假是根据反比例函数的增减性来判断的.注意“或为真的充要条件是.至少有一真 .“且为真的充要条件是同时为真 .“和一真一假 这些含有逻辑连接词的命题真假的判断法则.易错点五:充要条件 查看更多

 

题目列表(包括答案和解析)

【解析】最简单的方法是取一长方形动手按照其要求进行翻着,观察在翻着过程,即可知选项C是正确的.

【答案】C

查看答案和解析>>

分类讨论的关键是,分类要做到_________,关键是抓住分类____________.

查看答案和解析>>

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>

如图6,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.

(Ⅰ)证明:BD⊥PC;

(Ⅱ)若AD=4,BC=2,直线PD与平面PAC所成的角为30°,求四棱锥P-ABCD的体积.

【解析】(Ⅰ)因为

是平面PAC内的两条相较直线,所以BD平面PAC,

平面PAC,所以.

(Ⅱ)设AC和BD相交于点O,连接PO,由(Ⅰ)知,BD平面PAC,

所以是直线PD和平面PAC所成的角,从而.

由BD平面PAC,平面PAC,知.在中,由,得PD=2OD.因为四边形ABCD为等腰梯形,,所以均为等腰直角三角形,从而梯形ABCD的高为于是梯形ABCD面积

在等腰三角形AOD中,

所以

故四棱锥的体积为.

【点评】本题考查空间直线垂直关系的证明,考查空间角的应用,及几何体体积计算.第一问只要证明BD平面PAC即可,第二问由(Ⅰ)知,BD平面PAC,所以是直线PD和平面PAC所成的角,然后算出梯形的面积和棱锥的高,由算得体积

 

查看答案和解析>>

同学4人各写一张贺卡,先集中起来,然后每人从中任取一张贺卡;求下列条件的概率:

(1) 每人拿到的1张贺卡都是自己写的概率;

(2) 有且只有1个人拿到的贺卡是自己写的概率

【解析】本试题主要考查了古典概型的运用。解决该试题的关键是理解一次试验的所有基本事件数,然后结合事件A发生的事件数,利用比值可以得到概率值。

 

查看答案和解析>>

1.D

2.C 提示:画出满足条件A∪B=A∪C的文氏图,可知有五种情况,以观察其中一种,如图,显然只要图中阴影部分相等,B、C未必要相等,条件A∪B=A∪C仍可满足,对照四个选择支,A、B、D均可排除,故选C.

3.D

4.B 提示:由题意知,M,N,因此,),又A∩B,故集合A、B的子集中没有相同的集合,可知M、N中没有其他的公共元素,故正确的答案是M∩N=.

5.A   提示:由,当时,△

,当时,△,且,即

所以

6.A      7.D      8.A

9.D提示:设3x2-4x-32<0的一个必要不充分条件是为Q,P=.由题意知:P能推出Q,但Q不能推出P.也可理解为:PQ.

10.A          11.B

12.D    提示:由,又因为的充分而不必要条件,所以,即。可知A=或方程的两根要在区间[1,2]内,也即以下两种情况:

(1)

(2) ;综合(1)、(2)可得

二、填空题

13.3              14.     w.w.w.k.s.5.u.c.o.m

15. -2≤x≤6 提示:由[x]2-3[x]-10≤0得-2≤[x] ≤5,则-2≤x≤6.        16. ①④


同步练习册答案