④利用“ 传递性 查看更多

 

题目列表(包括答案和解析)

下面是空间线面位置关系中传递性的部分相关命题:
①与两条平行直线中一条平行的平面必与另一条直线平行;
②与两条平行直线中一条垂直的平面必与另一条直线垂直;
③与两条垂直直线中一条平行的平面必与另一条直线垂直;
④与两条垂直直线中一条垂直的平面必与另一条直线平行;
⑤与两条平行平面中一个平行的直线必与另一个平面平行;
⑥与两条平行平面中一个垂直的直线必与另一个平面垂直;
⑦与两条垂直平面中一个平行的直线必与另一个平面垂直;
⑧与两条垂直平面中一个垂直的直线必与另一个平面平行;
其中正确命题的个数有
2
2
个.

查看答案和解析>>

6、如果规定:“x=y,y=z,则x=z”叫做x,y,z关于等量关系具有传递性,那么空间三直线 a,b,c关于相交、垂直、平行、异面、共面这五种关系中具有传递性的是
平行

查看答案和解析>>

中学数学中存在许多关系,比如“相等关系”、“平行关系”等等.如果集合中元素之间的一个关系“”满足以下三个条件:

(1)自反性:对于任意,都有

(2)对称性:对于,若,则有

(3)传递性:对于,若,则有

则称“”是集合的一个等价关系.例如:“数的相等”是等价关系,而“直线的平行”不是等价关系(自反性不成立).请你再列出三个等价关系:______.

 

查看答案和解析>>

16.中学数学中存在许多关系,比如“相等关系”、“平行关系”等等.如果集合A中元素之间的一个关系“~”满足以下三个条件:

(1)自反性:对于任意aA,都有aa;

(2)对称性:对于a,bA,若ab,则有ba;

(3)传递性:对于a,b,cA,若ab,bc,则有ac.

则称“~”是集合A的一个等价关系.例如:“数的相等”是等价关系,而“直线的平行”不是等价关系(自反性不成立).请你再列出两个等价关系:              .

查看答案和解析>>

(07年福建卷)中学数学中存在许多关系,比如“相等关系”、“平行关系”等等.如果集合A中元素之间的一个关系“-”满足以下三个条件:

(1)自反性:对于任意aA,都有a-a;

(2)对称性:对于a,bA,若a-b,则有b-a;

(3)传递性:对于a,b,cA,若a-b,b-c,则有a-c.

则称“-”是集合A的一个等价关系.例如:“数的相等”是等价关系,而“直线的平行”不是等价关系(自反性不成立).请你再列出两个等价关系:              .

查看答案和解析>>

1.D

2.C 提示:画出满足条件A∪B=A∪C的文氏图,可知有五种情况,以观察其中一种,如图,显然只要图中阴影部分相等,B、C未必要相等,条件A∪B=A∪C仍可满足,对照四个选择支,A、B、D均可排除,故选C.

3.D

4.B 提示:由题意知,M,N,因此,),又A∩B,故集合A、B的子集中没有相同的集合,可知M、N中没有其他的公共元素,故正确的答案是M∩N=.

5.A   提示:由,当时,△

,当时,△,且,即

所以

6.A      7.D      8.A

9.D提示:设3x2-4x-32<0的一个必要不充分条件是为Q,P=.由题意知:P能推出Q,但Q不能推出P.也可理解为:PQ.

10.A          11.B

12.D    提示:由,又因为的充分而不必要条件,所以,即。可知A=或方程的两根要在区间[1,2]内,也即以下两种情况:

(1)

(2) ;综合(1)、(2)可得

二、填空题

13.3              14.     w.w.w.k.s.5.u.c.o.m

15. -2≤x≤6 提示:由[x]2-3[x]-10≤0得-2≤[x] ≤5,则-2≤x≤6.        16. ①④


同步练习册答案