题目列表(包括答案和解析)
已知函数
,
,k为非零实数.
(Ⅰ)设t=k2,若函数f(x),g(x)在区间(0,+∞)上单调性相同,求k的取值范围;
(Ⅱ)是否存在正实数k,都能找到t∈[1,2],使得关于x的方程f(x)=g(x)在[1,5]上有且仅有一个实数根,且在[-5,-1]上至多有一个实数根.若存在,请求出所有k的值的集合;若不存在,请说明理由.
【解析】本试题考查了运用导数来研究函数的单调性,并求解参数的取值范围。与此同时还能对于方程解的问题,转化为图像与图像的交点问题来长处理的数学思想的运用。
已知集合
A=
,
B=
.
(1)若
,求A∩B,
;
(2)若A
,求实数m的取值范围。
【解析】第一问首先翻译A,B为最简集合,即为
A=
![]()
B=![]()
然后利用当m=-1时,则有 B=![]()
, ![]()
第二问,因为A
,
所以满足A![]()
得到结论。
解:因为A=
,
B=![]()
当m=-1时,则有 B=![]()
, ![]()
(2) 因为A
,
所以满足A![]()
故![]()
(本小题满分14分)在平面直角坐标系中,已知
为坐标原点,点
的坐标为
,点
的坐标为
,其中
且
.设
.
(I)若
,
,
,求方程
在区间
内的解集;
(II)若点
是曲线
上的动点.当
时,设函数
的值域为集合
,不等式
的解集为集合
. 若
恒成立,求实数
的最大值;
(III)根据本题条件我们可以知道,函数
的性质取决于变量
、
和
的值. 当
时,试写出一个条件,使得函数
满足“图像关于点
对称,且在
处
取得最小值”.【说明:请写出你的分析过程.本小题将根据你对问题探究的完整性和在研究过程中所体现的思维层次,给予不同的评分.】
1.D

2.C 提示:画出满足条件A∪B=A∪C的文氏图,可知有五种情况,以观察其中一种,如图,显然只要图中阴影部分相等,B、C未必要相等,条件A∪B=A∪C仍可满足,对照四个选择支,A、B、D均可排除,故选C.
3.D
4.B 提示:由题意知,
M,
N,因此,
(
),又A∩B=
,故集合A、B的子集中没有相同的集合,可知M、N中没有其他的公共元素,故正确的答案是M∩N=
.
5.A 提示:由
得
,当
时,△
,
得
,当
时,△
,且
,即
所以
6.A 7.D 8.A
9.D提示:设3x2-4x-32<0的一个必要不充分条件是为Q,P=
.由题意知:P能推出Q,但Q不能推出P.也可理解为:P
Q.
10.A 11.B
12.D 提示:由
,又因为
是
的充分而不必要条件,所以
,即
。可知A=
或方程
的两根要在区间[1,2]内,也即以下两种情况:
(1)
;
(2)
;综合(1)、(2)可得
。
二、填空题
13.3 14.
w.w.w.k.s.5.u.c.o.m
15. -2≤x≤6 提示:由[x]2-3[x]-10≤0得-2≤[x] ≤5,则-2≤x≤6. 16. ①④
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com