解析: 由解得.则选C. 查看更多

 

题目列表(包括答案和解析)

设抛物线>0)的焦点为,准线为上一点,已知以为圆心,为半径的圆,两点.

(Ⅰ)若,的面积为,求的值及圆的方程;

 (Ⅱ)若三点在同一条直线上,直线平行,且只有一个公共点,求坐标原点到距离的比值.

【命题意图】本题主要考查圆的方程、抛物线的定义、直线与抛物线的位置关系、点到直线距离公式、线线平行等基础知识,考查数形结合思想和运算求解能力.

【解析】设准线轴的焦点为E,圆F的半径为

则|FE|==,E是BD的中点,

(Ⅰ) ∵,∴=,|BD|=

设A(),根据抛物线定义得,|FA|=

的面积为,∴===,解得=2,

∴F(0,1),  FA|=,  ∴圆F的方程为:

(Ⅱ) 解析1∵三点在同一条直线上, ∴是圆的直径,,

由抛物线定义知,∴,∴的斜率为或-

∴直线的方程为:,∴原点到直线的距离=

设直线的方程为:,代入得,

只有一个公共点, ∴=,∴

∴直线的方程为:,∴原点到直线的距离=

∴坐标原点到距离的比值为3.

解析2由对称性设,则

      点关于点对称得:

     得:,直线

     切点

     直线

坐标原点到距离的比值为

 

查看答案和解析>>

已知函数.]

(1)求函数的最小值和最小正周期;

(2)设的内角的对边分别为,且

,求的值.

【解析】第一问利用

得打周期和最值

第二问

 

,由正弦定理,得,①  

由余弦定理,得,即,②

由①②解得

 

查看答案和解析>>

⊙O1和⊙O2的极坐标方程分别为

⑴把⊙O1和⊙O2的极坐标方程化为直角坐标方程;

⑵求经过⊙O1,⊙O2交点的直线的直角坐标方程.

【解析】本试题主要是考查了极坐标的返程和直角坐标方程的转化和简单的圆冤啊位置关系的运用

(1)中,借助于公式,将极坐标方程化为普通方程即可。

(2)中,根据上一问中的圆的方程,然后作差得到交线所在的直线的普通方程。

解:以极点为原点,极轴为x轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.

(I),由.所以

为⊙O1的直角坐标方程.

同理为⊙O2的直角坐标方程.

(II)解法一:由解得

即⊙O1,⊙O2交于点(0,0)和(2,-2).过交点的直线的直角坐标方程为y=-x.

解法二: 由,两式相减得-4x-4y=0,即过交点的直线的直角坐标方程为y=-x

 

查看答案和解析>>

已知二次函数的二次项系数为,且不等式的解集为,

(1)若方程有两个相等的根,求的解析式;

(2)若的最大值为正数,求的取值范围.

【解析】第一问中利用∵f(x)+2x>0的解集为(1,3),

设出二次函数的解析式,然后利用判别式得到a的值。

第二问中,

解:(1)∵f(x)+2x>0的解集为(1,3),

   ①

由方程

              ②

∵方程②有两个相等的根,

即5a2-4a-1=0,解得a=1(舍) 或 a=-1/5

a=-1/5代入①得:

(2)由

 

 解得:

故当f(x)的最大值为正数时,实数a的取值范围是

 

查看答案和解析>>

已知向量,且,A为锐角,求:

(1)角A的大小;

(2)求函数的单调递增区间和值域.

【解析】第一问中利用,解得   又A为锐角                 

      

第二问中,

 解得单调递增区间为

解:(1)        ……………………3分

   又A为锐角                 

                              ……………………5分

(2)

                                                  ……………………8分

  由 解得单调递增区间为

                                                  ……………………10分

 

 

查看答案和解析>>


同步练习册答案