又因为.所以.代入②式并整理.得. 查看更多

 

题目列表(包括答案和解析)

已知中心在坐标原点,焦点在轴上的椭圆C;其长轴长等于4,离心率为

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)若点(0,1), 问是否存在直线与椭圆交于两点,且?若存在,求出的取值范围,若不存在,请说明理由.

【解析】本试题主要考查了椭圆的方程的求解,直线与椭圆的位置关系的运用。

第一问中,可设椭圆的标准方程为 

则由长轴长等于4,即2a=4,所以a=2.又,所以,

又由于 

所求椭圆C的标准方程为

第二问中,

假设存在这样的直线,设,MN的中点为

 因为|ME|=|NE|所以MNEF所以

(i)其中若时,则K=0,显然直线符合题意;

(ii)下面仅考虑情形:

,得,

,得

代入1,2式中得到范围。

(Ⅰ) 可设椭圆的标准方程为 

则由长轴长等于4,即2a=4,所以a=2.又,所以,

又由于 

所求椭圆C的标准方程为

 (Ⅱ) 假设存在这样的直线,设,MN的中点为

 因为|ME|=|NE|所以MNEF所以

(i)其中若时,则K=0,显然直线符合题意;

(ii)下面仅考虑情形:

,得,

,得……②  ……………………9分

代入①式得,解得………………………………………12分

代入②式得,得

综上(i)(ii)可知,存在这样的直线,其斜率k的取值范围是

 

查看答案和解析>>

已知中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2,2),且抛物线的焦点为F1.

(Ⅰ)求椭圆E的方程;

(Ⅱ)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.

【解析】本试题主要考查了椭圆的方程的求解以及直线与椭圆的位置关系的运用。第一问中,设出椭圆的方程,然后结合抛物线的焦点坐标得到,又因为,这样可知得到。第二问中设直线l的方程为y=-x+m与椭圆联立方程组可以得到

,再利用可以结合韦达定理求解得到m的值和圆p的方程。

解:(Ⅰ)设椭圆E的方程为

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以椭圆E的方程为…………………………4分

(Ⅱ)依题意,直线OC斜率为1,由此设直线l的方程为y=-x+m,……………5分

 代入椭圆E方程,得…………………………6分

………………………7分

………………8分

………………………9分

……………………………10分

    当m=3时,直线l方程为y=-x+3,此时,x1 +x2=4,圆心为(2,1),半径为2,

圆P的方程为(x-2)2+(y-1)2=4;………………………………11分

同理,当m=-3时,直线l方程为y=-x-3,

圆P的方程为(x+2)2+(y+1)2=4

 

查看答案和解析>>

已知数列的前项和为,且 (N*),其中

(Ⅰ) 求的通项公式;

(Ⅱ) 设 (N*).

①证明:

② 求证:.

【解析】本试题主要考查了数列的通项公式的求解和运用。运用关系式,表示通项公式,然后得到第一问,第二问中利用放缩法得到,②由于

所以利用放缩法,从此得到结论。

解:(Ⅰ)当时,由.  ……2分

若存在

从而有,与矛盾,所以.

从而由.  ……6分

 (Ⅱ)①证明:

证法一:∵

 

.…………10分

证法二:,下同证法一.           ……10分

证法三:(利用对偶式)设

.又,也即,所以,也即,又因为,所以.即

                    ………10分

证法四:(数学归纳法)①当时, ,命题成立;

   ②假设时,命题成立,即,

   则当时,

    即

故当时,命题成立.

综上可知,对一切非零自然数,不等式②成立.           ………………10分

②由于

所以

从而.

也即

 

查看答案和解析>>

设点是抛物线的焦点,是抛物线上的个不同的点().

(1) 当时,试写出抛物线上的三个定点的坐标,从而使得

(2)当时,若

求证:

(3) 当时,某同学对(2)的逆命题,即:

“若,则.”

开展了研究并发现其为假命题.

请你就此从以下三个研究方向中任选一个开展研究:

① 试构造一个说明该逆命题确实是假命题的反例(本研究方向最高得4分);

② 对任意给定的大于3的正整数,试构造该假命题反例的一般形式,并说明你的理由(本研究方向最高得8分);

③ 如果补充一个条件后能使该逆命题为真,请写出你认为需要补充的一个条件,并说明加上该条件后,能使该逆命题为真命题的理由(本研究方向最高得10分).

【评分说明】本小题若填空不止一个研究方向,则以实得分最高的一个研究方向的得分作为本小题的最终得分.

【解析】第一问利用抛物线的焦点为,设

分别过作抛物线的准线的垂线,垂足分别为.

由抛物线定义得到

第二问设,分别过作抛物线的准线垂线,垂足分别为.

由抛物线定义得

第三问中①取时,抛物线的焦点为

分别过作抛物线的准线垂线,垂足分别为.由抛物线定义得

,不妨取

解:(1)抛物线的焦点为,设

分别过作抛物线的准线的垂线,垂足分别为.由抛物线定义得

 

因为,所以

故可取满足条件.

(2)设,分别过作抛物线的准线垂线,垂足分别为.

由抛物线定义得

   又因为

所以.

(3) ①取时,抛物线的焦点为

分别过作抛物线的准线垂线,垂足分别为.由抛物线定义得

,不妨取

.

是一个当时,该逆命题的一个反例.(反例不唯一)

② 设,分别过

抛物线的准线的垂线,垂足分别为

及抛物线的定义得

,即.

因为上述表达式与点的纵坐标无关,所以只要将这点都取在轴的上方,则它们的纵坐标都大于零,则

,所以.

(说明:本质上只需构造满足条件且的一组个不同的点,均为反例.)

③ 补充条件1:“点的纵坐标)满足 ”,即:

“当时,若,且点的纵坐标)满足,则”.此命题为真.事实上,设

分别过作抛物线准线的垂线,垂足分别为,由

及抛物线的定义得,即,则

又由,所以,故命题为真.

补充条件2:“点与点为偶数,关于轴对称”,即:

“当时,若,且点与点为偶数,关于轴对称,则”.此命题为真.(证略)

 

查看答案和解析>>

设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m,n)为所有这样的数表构成的集合。

对于A∈S(m,n),记ri(A)为A的第ⅰ行各数之和(1≤ⅰ≤m),Cj(A)为A的第j列各数之和(1≤j≤n):

记K(A)为∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。

(1)   对如下数表A,求K(A)的值;

1

1

-0.8

0.1

-0.3

-1

 

(2)设数表A∈S(2,3)形如

1

1

c

a

b

-1

 

求K(A)的最大值;

(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值。

【解析】(1)因为

所以

(2)  不妨设.由题意得.又因为,所以

于是

    

所以,当,且时,取得最大值1。

(3)对于给定的正整数t,任给数表如下,

任意改变A的行次序或列次序,或把A中的每一个数换成它的相反数,所得数表

,并且,因此,不妨设

得定义知,

又因为

所以

     

     

所以,

对数表

1

1

1

-1

-1

 

综上,对于所有的的最大值为

 

查看答案和解析>>

一、选择题

1-5 BBAB 文B理A  6-10 ADCBC 11-12文B理D A

6.A 提示:设,则表示点与点(0,0)连线的斜率.当该直线kx-y=0与圆相切时,取得最大值与最小值.圆心(2,0),由=1,解得,∴的最大值为.11.(文) B 

11.(文) A       提示:抛物线的焦点为F(1,0),作PA垂直于准线x=-1,则

|PA|=|PF|,当A、P、Q在同一条直线上时,

|PF|+|PQ|=|PA|+|PQ|=|AQ|,

此时,点P到Q点距离与抛物线焦点距离之和取得最小值,

P点的纵坐标为-1,有1=4x,x=,此时P点坐标为(,-1),故选A。

11.(理) B提示:设

12.A    提示:如右图所示,设点P的坐标为(x0,y0),由抛物线以F2为顶点,F1为焦点,可得其准线的方

程为x=3c, 根据抛物线的定义可得|PF1|=|PR|=3c-x0,又由点P为双曲线上的点,根据双曲线的第二定义可得=e, 即得|PF2|=ex0-a, 由已知a|PF2|+c|PF1|=8a2,可得-a2+3c2=8a2,即e2=3,由e>1可得e=, 故应选A.

二、填空题:13-16文    3   35

 

 

 

 

 

 

九、实战演习

一  选择题

1.与圆相切,且在两坐标轴上截距相等的直线共有 (   )

A.2条          B.3条         C.4条        D.6条

1.C提示: 在两坐标轴上截距相等的直线有两类:①直线过原点时,有两条与已知圆相切;②直线不过原点时,设其方程为,也有两条与已知圆相切.易知①、②中四条切线互不相同,故选C.

2.在中,三内角所对的边是成等差数列,那么直线与直线的位置关系是  (        )

A.平行        B.重合       C.垂直      D.相交但不垂直

2.B提示:成等差数列

,故两直线重合。选B。

3.已知函数,集合,集合,则集合的面积是      

A.             B.            C.            D.

3.D提示: 集合即为:,集合即为: ,其面积等于半圆面积。

4.(文)已知直线m:交x轴于M,E是直线m上的点,N(1,0),又P在线段EN的垂直平分线上,且,则动点P的轨迹是(  )

A.圆   B.椭圆   C.双曲线    D.抛物线

4.(文)D.

4.(理)已知P在双曲线上变动,O是坐标原点,F是双曲线的右焦点,则的重心G的轨迹方程是(  )

A.    B.

C.     D.

4.(理)C.提示:双曲线焦点坐标是F(6,0).设双曲线上任一点P(x0,y0), 的重心G(x,y),则由重心公式,

,解得,代入,得为所求.

5.已知是三角形的一个内角,且,则方程表示(   )

A.焦点在轴上的椭圆     B.焦点在轴上的椭圆

C.焦点在轴上的双曲线    D.焦点在轴上的双曲线

5.B提示:由,又是三角形的一个内角,故

再由

结合解得

故方程表示焦点在轴上的椭圆。选B。

或者结合单位圆中的三角函数线直接断定

6.过抛物线的焦点作一条直线与抛物线相交于A、B两点,它们的横坐标之和等于5,则这样的直线                         (    )

A.有且仅有一条     B.有且仅有两条      C.有无穷多条      D.不存在

6.B提示:该抛物线的通径长为4,而这样的弦AB的长为,故这样的直线有且仅有两条。选B。

或者(1)当该直线的斜率不存在时,它们的横坐标之和等于2;

(2)当该直线的斜率存在时,设该直线方程为,代入抛物线方程得

,由。故这样的直线有且仅有两条。

7.一个椭圆中心在原点,焦点轴上,(2,)是椭圆上一点,且成等差数列,则椭圆方程为            (   )

A.     B.    C.     D.

7.A提示:设椭圆方程为,由成等差数列知,从而,故椭圆方程为,将P点的坐标代入得,故所求的椭圆方程为。选A。

8.以A(4,3,1),B(7,1,2),C(5,2,3)为顶点的三角形形状为(  )

A .直角三角形  B. 等腰三角形   C.非等腰三角形三角形   D.等边三角形

8. B.提示:由两点间距离公式,得,故选B.

9. 若直线与双曲线的右支交于不同的两点,则k的取值范围是( )

A.   B.     C.   D.

9.D提示:特别注意的题目。将直线代入双曲线方程

若直线与双曲线的右支交于不同的两点,则应满足

。选D。

10. (文)设离心率为e的双曲线的右焦点为F,直线过点F且斜率为K,则直线与双曲线C左、右支都有相交的充要条件是(  )

A.      B. 

C.      D.

10. (理)已知两个点M(-5,0)和N(5,0),若直线上存在点P,使|PM|-|PN|=6,则称该直线为“B型直线”。给出下列直线①。其中属于“B型直线”的是(      )

A、①③    B、①②     C、③④     D、①④

10. (文)C  提示:由已知设渐近线的斜率为于是

,即故选C;

10. (理)B 提示:理解为以M、N为焦点的双曲线,则c=5, 又|PM|-|PN|=6,则a=3,b=4,几何意义是双曲线的右支,所谓“B型直线”即直线与双曲线的右支有交点,又渐近线为:,逐一分析,只有①②与双曲线右支有交点,故选B;

11.已知双曲线的左、右焦点分别为,点P在双曲线上,且,则此双曲线的离心率的最大值为   (   )

A、      B、     C、     D、2

11.B提示:由    又

故选B项。

12.若AB过椭圆 + =1 中心的弦, F1为椭圆的焦点, 则△F1AB面积的最大值为(    ) 

A. 6   B.12   C.24   D.48

12.B提示:设AB的方程为,代入椭圆方程得。选B。

二  填空题

13.椭圆M:=1 (a>b>0) 的左、右焦点分别为F1、F2,P为椭圆M上任一点,且 的最大值的取值范围是[2c2,3c2],其中. 则椭圆M的离心率e的取值范围是         

13.

14. 1.1998年12月19日,太原卫星发射中心为摩托罗拉公司(美国)发射了两颗“铱星”系统通信卫星.卫星运行的轨道是以地球中心为一个焦点的椭圆,近地点为m km,远地点为  n km,地球的半径为R km,则通信卫星运行轨道的短轴长等于         

           

14. 2提示:  c=m+R+c=n+R

c=b=2=2.

15. 已知与曲线C:x2+y2-2x-2y+1=0相切的直线交x、y轴于A、B两点,O为原点,|OA|=a,|OB|=b,a>2,b>2,线段AB中点的轨迹方程是                               。

15. 提示:满足(a-2)(b-2)=2。设AB的中点坐标为(x,y), 则a=2x,b=2y, 代入①得(2x-2)(2y-2)=2, 即(x-1)(y-1)= (x>1,y>1)。

    16.以下四个关于圆锥曲线的命题中

①设A、B为两个定点,k为非零常数,,则动点P的轨迹为双曲线;

②过定圆C上一定点A作该圆的动弦AB,O为坐标原点,若则动点的轨迹为椭圆;③方程的两根可分别作为椭圆和双曲线的离心率;

④双曲线有相同的焦点.

其中真命题的序号为                 (写出所有真命题的序号)

16. ③、④

三  解答题(74分)

17. (本小题满分12分)已知,直线和圆

(1)求直线斜率的取值范围;

(2)直线能否将圆分割成弧长的比值为的两段圆弧?为什么?

解析:(1)直线的方程可化为,直线的斜率,因为,所以,当且仅当时等号成立.

所以,斜率的取值范围是

(2)不能.由(1)知的方程为,其中

的圆心为,半径.圆心到直线的距离

,得,即.从而,若与圆相交,则圆截直线所得的弦所对的圆心角小于.所以不能将圆分割成弧长的比值为的两段弧.

18. (本小题满分12分)已知A、B分别是椭圆的左右两个焦点,O为坐标原点,点P)在椭圆上,线段PB与y轴的交点M为线段PB的中点。

(1)求椭圆的标准方程;

(2)点C是椭圆上异于长轴端点的任意一点,对于△ABC,求的值

18.解:(1)由题意知:

∴椭圆的标准方程为=1.        

(2)∵点C在椭圆上,A、B是椭圆的两个焦点,

∴AC+BC=2a=,AB=2c=2 .   

在△ABC中,由正弦定理,  ,

.       

19.(本小题满分12分)已知椭圆的中心在原点,离心率为,一个焦点是(为大于0的常数).

 (1)求椭圆的方程;

 (2)设是椭圆上一点,且过点

同步练习册答案