因此..又.所以. 查看更多

 

题目列表(包括答案和解析)

已知数列的前项和为,且 (N*),其中

(Ⅰ) 求的通项公式;

(Ⅱ) 设 (N*).

①证明:

② 求证:.

【解析】本试题主要考查了数列的通项公式的求解和运用。运用关系式,表示通项公式,然后得到第一问,第二问中利用放缩法得到,②由于

所以利用放缩法,从此得到结论。

解:(Ⅰ)当时,由.  ……2分

若存在

从而有,与矛盾,所以.

从而由.  ……6分

 (Ⅱ)①证明:

证法一:∵

 

.…………10分

证法二:,下同证法一.           ……10分

证法三:(利用对偶式)设

.又,也即,所以,也即,又因为,所以.即

                    ………10分

证法四:(数学归纳法)①当时, ,命题成立;

   ②假设时,命题成立,即,

   则当时,

    即

故当时,命题成立.

综上可知,对一切非零自然数,不等式②成立.           ………………10分

②由于

所以

从而.

也即

 

查看答案和解析>>

解:能否投中,那得看抛物线与篮圈所在直线是否有交点。因为函数的零点是-2与4,篮圈所在直线x=5在4的右边,抛物线又是开口向下的,所以投不中。

某城市出租汽车的起步价为10元,行驶路程不超出4km,则按10元的标准收租车费若行驶路程超出4km,则按每超出lkm加收2元计费(超出不足1km的部分按lkm计).从这个城市的民航机场到某宾馆的路程为15km.某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,

(1)他收旅客的租车费η是否也是一个随机变量?如果是,找出租车费η与行车路程ξ的关系式;

(2)已知某旅客实付租车费38元,而出租汽车实际行驶了15km,问出租车在途中因故停车累计最多几分钟?这种情况下,停车累计时间是否也是一个随机变量?

查看答案和解析>>

2.A解析:由知函数在上有零点,又因为函数在(0,+)上是减函数,所以函数y=f(x) 在(0,+)上有且只有一个零点不妨设为,则,又因为函数是偶函数,所以=0并且函数在(0,+)上是减函数,因此-是(-,0)上的唯一零点,所以函数共有两个零点

下列叙述中,是随机变量的有(    )

①某工厂加工的零件,实际尺寸与规定尺寸之差;②标准状态下,水沸腾的温度;③某大桥一天经过的车辆数;④向平面上投掷一点,此点坐标.

A.②③         B.①②     C.①③④       D.①③

查看答案和解析>>

某地区的一种特色水果上市时间能持续5个月,预测上市初期和后期会因供不应求使价格呈连续上涨态势,而中期又将出现供大于求使价格连续下跌,现有三种价格模拟函数:①;②;③ (以上三式中均为常数,且>2).

(1)为准确研究其价格走势,应选哪种价格模拟函数,为什么?

(2)若(1)=4,(3)=6,求出所选函数()的解析式(注:函数的定义域是[1,6].其中=1表示4月1日,=2表示5月1日,……以此类推);

(3)在(2)的条件下,这种水果在几月份价格下跌?

查看答案和解析>>

已知数列是各项均不为0的等差数列,公差为d,为其前n项和,且满足,.数列满足,为数列的前n项和.

(1)求数列的通项公式和数列的前n项和

(2)若对任意的,不等式恒成立,求实数的取值范围;

(3)是否存在正整数,使得成等比数列?若存在,求出所有的值;若不存在,请说明理由.

【解析】第一问利用在中,令n=1,n=2,

   即      

解得,, [

时,满足

第二问,①当n为偶数时,要使不等式恒成立,即需不等式恒成立.   

 ,等号在n=2时取得.

此时 需满足.  

②当n为奇数时,要使不等式恒成立,即需不等式恒成立.     

 是随n的增大而增大, n=1时取得最小值-6.

此时 需满足

第三问

     若成等比数列,则

即.

,可得,即

        .

(1)(法一)在中,令n=1,n=2,

   即      

解得,, [

时,满足

(2)①当n为偶数时,要使不等式恒成立,即需不等式恒成立.   

 ,等号在n=2时取得.

此时 需满足.  

②当n为奇数时,要使不等式恒成立,即需不等式恒成立.     

 是随n的增大而增大, n=1时取得最小值-6.

此时 需满足

综合①、②可得的取值范围是

(3)

     若成等比数列,则

即.

,可得,即

,且m>1,所以m=2,此时n=12.

因此,当且仅当m=2, n=12时,数列中的成等比数列

 

查看答案和解析>>

一、选择题

1-5 BBAB 文B理A  6-10 ADCBC 11-12文B理D A

6.A 提示:设,则表示点与点(0,0)连线的斜率.当该直线kx-y=0与圆相切时,取得最大值与最小值.圆心(2,0),由=1,解得,∴的最大值为.11.(文) B 

11.(文) A       提示:抛物线的焦点为F(1,0),作PA垂直于准线x=-1,则

|PA|=|PF|,当A、P、Q在同一条直线上时,

|PF|+|PQ|=|PA|+|PQ|=|AQ|,

此时,点P到Q点距离与抛物线焦点距离之和取得最小值,

P点的纵坐标为-1,有1=4x,x=,此时P点坐标为(,-1),故选A。

11.(理) B提示:设

12.A    提示:如右图所示,设点P的坐标为(x0,y0),由抛物线以F2为顶点,F1为焦点,可得其准线的方

程为x=3c, 根据抛物线的定义可得|PF1|=|PR|=3c-x0,又由点P为双曲线上的点,根据双曲线的第二定义可得=e, 即得|PF2|=ex0-a, 由已知a|PF2|+c|PF1|=8a2,可得-a2+3c2=8a2,即e2=3,由e>1可得e=, 故应选A.

二、填空题:13-16文    3   35

 

 

 

 

 

 

九、实战演习

一  选择题

1.与圆相切,且在两坐标轴上截距相等的直线共有 (   )

A.2条          B.3条         C.4条        D.6条

1.C提示: 在两坐标轴上截距相等的直线有两类:①直线过原点时,有两条与已知圆相切;②直线不过原点时,设其方程为,也有两条与已知圆相切.易知①、②中四条切线互不相同,故选C.

2.在中,三内角所对的边是成等差数列,那么直线与直线的位置关系是  (        )

A.平行        B.重合       C.垂直      D.相交但不垂直

2.B提示:成等差数列

,故两直线重合。选B。

3.已知函数,集合,集合,则集合的面积是      

A.             B.            C.            D.

3.D提示: 集合即为:,集合即为: ,其面积等于半圆面积。

4.(文)已知直线m:交x轴于M,E是直线m上的点,N(1,0),又P在线段EN的垂直平分线上,且,则动点P的轨迹是(  )

A.圆   B.椭圆   C.双曲线    D.抛物线

4.(文)D.

4.(理)已知P在双曲线上变动,O是坐标原点,F是双曲线的右焦点,则的重心G的轨迹方程是(  )

A.    B.

C.     D.

4.(理)C.提示:双曲线焦点坐标是F(6,0).设双曲线上任一点P(x0,y0), 的重心G(x,y),则由重心公式,

,解得,代入,得为所求.

5.已知是三角形的一个内角,且,则方程表示(   )

A.焦点在轴上的椭圆     B.焦点在轴上的椭圆

C.焦点在轴上的双曲线    D.焦点在轴上的双曲线

5.B提示:由,又是三角形的一个内角,故

再由

结合解得

故方程表示焦点在轴上的椭圆。选B。

或者结合单位圆中的三角函数线直接断定

6.过抛物线的焦点作一条直线与抛物线相交于A、B两点,它们的横坐标之和等于5,则这样的直线                         (    )

A.有且仅有一条     B.有且仅有两条      C.有无穷多条      D.不存在

6.B提示:该抛物线的通径长为4,而这样的弦AB的长为,故这样的直线有且仅有两条。选B。

或者(1)当该直线的斜率不存在时,它们的横坐标之和等于2;

(2)当该直线的斜率存在时,设该直线方程为,代入抛物线方程得

,由。故这样的直线有且仅有两条。

7.一个椭圆中心在原点,焦点轴上,(2,)是椭圆上一点,且成等差数列,则椭圆方程为            (   )

A.     B.    C.     D.

7.A提示:设椭圆方程为,由成等差数列知,从而,故椭圆方程为,将P点的坐标代入得,故所求的椭圆方程为。选A。

8.以A(4,3,1),B(7,1,2),C(5,2,3)为顶点的三角形形状为(  )

A .直角三角形  B. 等腰三角形   C.非等腰三角形三角形   D.等边三角形

8. B.提示:由两点间距离公式,得,故选B.

9. 若直线与双曲线的右支交于不同的两点,则k的取值范围是( )

A.   B.     C.   D.

9.D提示:特别注意的题目。将直线代入双曲线方程

若直线与双曲线的右支交于不同的两点,则应满足

。选D。

10. (文)设离心率为e的双曲线的右焦点为F,直线过点F且斜率为K,则直线与双曲线C左、右支都有相交的充要条件是(  )

A.      B. 

C.      D.

10. (理)已知两个点M(-5,0)和N(5,0),若直线上存在点P,使|PM|-|PN|=6,则称该直线为“B型直线”。给出下列直线①。其中属于“B型直线”的是(      )

A、①③    B、①②     C、③④     D、①④

10. (文)C  提示:由已知设渐近线的斜率为于是

,即故选C;

10. (理)B 提示:理解为以M、N为焦点的双曲线,则c=5, 又|PM|-|PN|=6,则a=3,b=4,几何意义是双曲线的右支,所谓“B型直线”即直线与双曲线的右支有交点,又渐近线为:,逐一分析,只有①②与双曲线右支有交点,故选B;

11.已知双曲线的左、右焦点分别为,点P在双曲线上,且,则此双曲线的离心率的最大值为   (   )

A、      B、     C、     D、2

11.B提示:由    又

故选B项。

12.若AB过椭圆 + =1 中心的弦, F1为椭圆的焦点, 则△F1AB面积的最大值为(    ) 

A. 6   B.12   C.24   D.48

12.B提示:设AB的方程为,代入椭圆方程得。选B。

二  填空题

13.椭圆M:=1 (a>b>0) 的左、右焦点分别为F1、F2,P为椭圆M上任一点,且 的最大值的取值范围是[2c2,3c2],其中. 则椭圆M的离心率e的取值范围是         

13.

14. 1.1998年12月19日,太原卫星发射中心为摩托罗拉公司(美国)发射了两颗“铱星”系统通信卫星.卫星运行的轨道是以地球中心为一个焦点的椭圆,近地点为m km,远地点为  n km,地球的半径为R km,则通信卫星运行轨道的短轴长等于         

           

14. 2提示:  c=m+R+c=n+R

c=b=2=2.

15. 已知与曲线C:x2+y2-2x-2y+1=0相切的直线交x、y轴于A、B两点,O为原点,|OA|=a,|OB|=b,a>2,b>2,线段AB中点的轨迹方程是                               。

15. 提示:满足(a-2)(b-2)=2。设AB的中点坐标为(x,y), 则a=2x,b=2y, 代入①得(2x-2)(2y-2)=2, 即(x-1)(y-1)= (x>1,y>1)。

    16.以下四个关于圆锥曲线的命题中

①设A、B为两个定点,k为非零常数,,则动点P的轨迹为双曲线;

②过定圆C上一定点A作该圆的动弦AB,O为坐标原点,若则动点的轨迹为椭圆;③方程的两根可分别作为椭圆和双曲线的离心率;

④双曲线有相同的焦点.

其中真命题的序号为                 (写出所有真命题的序号)

16. ③、④

三  解答题(74分)

17. (本小题满分12分)已知,直线和圆

(1)求直线斜率的取值范围;

(2)直线能否将圆分割成弧长的比值为的两段圆弧?为什么?

解析:(1)直线的方程可化为,直线的斜率,因为,所以,当且仅当时等号成立.

所以,斜率的取值范围是

(2)不能.由(1)知的方程为,其中

的圆心为,半径.圆心到直线的距离

,得,即.从而,若与圆相交,则圆截直线所得的弦所对的圆心角小于.所以不能将圆分割成弧长的比值为的两段弧.

18. (本小题满分12分)已知A、B分别是椭圆的左右两个焦点,O为坐标原点,点P)在椭圆上,线段PB与y轴的交点M为线段PB的中点。

(1)求椭圆的标准方程;

(2)点C是椭圆上异于长轴端点的任意一点,对于△ABC,求的值

18.解:(1)由题意知:

∴椭圆的标准方程为=1.        

(2)∵点C在椭圆上,A、B是椭圆的两个焦点,

∴AC+BC=2a=,AB=2c=2 .   

在△ABC中,由正弦定理,  ,

.       

19.(本小题满分12分)已知椭圆的中心在原点,离心率为,一个焦点是(为大于0的常数).

 (1)求椭圆的方程;

 (2)设是椭圆上一点,且过点

同步练习册答案